4.6.1 Direct Images
Let $f\colon X\to Y$ be a function.
The direct image function associated to $f$ is the function
\[ f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]
defined by
\begin{align*} f_{!}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some $x\in U$}\\ & \text{such that $y=f\webleft (x\webright )$} \end{aligned} \right\} \\ & = \left\{ f\webleft (x\webright )\in Y\ \middle |\ x\in U\right\} \end{align*}
for each $U\in \mathcal{P}\webleft (X\webright )$.
Sometimes one finds the notation
\[ \exists _{f}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]
for $f_{!}$. This notation comes from the fact that the following statements are equivalent, where $y\in Y$ and $U\in \mathcal{P}\webleft (X\webright )$:
-
•
We have $y\in \exists _{f}\webleft (U\webright )$.
-
•
There exists some $x\in U$ such that $f\webleft (x\webright )=y$.
We will not make use of this notation elsewhere in Clowder.
ゴ
ゴ
ゴ
Notation for direct images between powersets is tricky:
-
1.
Direct images for powersets and presheaves are both adjoint to their corresponding inverse image functors. However, the direct image functor for powersets is a left adjoint, while the direct image functor for presheaves is a right adjoint:
-
(a)
Powersets. Given a function $f\colon X\to Y$, we have an inverse image functor
\[ f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright ). \]
The left adjoint of this functor is the usual direct image, defined above in Definition 4.6.1.1.1.
-
(b)
Presheaves. Given a morphism of topological spaces $f\colon X\to Y$, we have an inverse image functor
\[ f^{-1}\colon \mathsf{PSh}\webleft (Y\webright )\to \mathsf{PSh}\webleft (X\webright ). \]
The right adjoint of this functor is the direct image functor of presheaves, defined in
.
-
2.
The presheaf direct image functor is denoted $f_{*}$, but the direct image functor for powersets is denoted $f_{!}$ (as it’s a left adjoint).
-
3.
Adding to the confusion, it’s somewhat common for $f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$ to be denoted $f_{*}$.
We chose to write $f_{!}$ for the direct image to keep the notation aligned with the following similar adjoint situations:
Situation
|
Adjoint String
|
Functoriality
of Powersets
|
$\webleft (f_{!}\dashv f^{-1}\dashv f_{*}\webright )\colon \mathcal{P}\webleft (X\webright )\overset {\rightleftarrows }{\to }\mathcal{P}\webleft (Y\webright )$
|
Functoriality of
Presheaf Categories
|
$\webleft (f_{!}\dashv f^{-1}\dashv f_{*}\webright )\colon \mathsf{PSh}\webleft (X\webright )\overset {\rightleftarrows }{\to }\mathsf{PSh}\webleft (Y\webright )$
|
Base Change
|
$\webleft (f_{!}\dashv f^{*}\dashv f_{*}\webright )\colon \mathcal{C}_{/X}\overset {\rightleftarrows }{\to }\mathcal{C}_{/Y}$
|
Kan Extensions
|
$\webleft (F_{!}\dashv F^{*}\dashv F_{*}\webright )\colon \mathsf{Fun}\webleft (\mathcal{C},\mathcal{E}\webright )\overset {\rightleftarrows }{\to }\mathsf{Fun}\webleft (\mathcal{D},\mathcal{E}\webright )$
|
ゴ
ゴ
ゴ
Omitted.
This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and
,
of
.
Item 3: Interaction With Unions of Families of Subsets
We have
\begin{align*} \bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcup _{V\in \left\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}
This finishes the proof.
Item 4: Interaction With Intersections of Families of Subsets
We have
\begin{align*} \bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcap _{V\in \left\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}
This finishes the proof.
Item 5: Interaction With Binary Unions
See [Proof Wiki Contributors, Image of Union Under Mapping — Proof Wiki].
Item 6: Interaction With Binary Intersections
See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki].
Item 7: Interaction With Differences
See [Proof Wiki Contributors, Image of Set Difference Under Mapping — Proof Wiki].
Item 8: Interaction With Complements
Applying Item 17 to $X\setminus U$, we have
\begin{align*} f_{!}\webleft (U^{\textsf{c}}\webright ) & = f_{!}\webleft (X\setminus U\webright )\\ & = Y\setminus f_{*}\webleft (X\setminus \webleft (X\setminus U\webright )\webright )\\ & = Y\setminus f_{*}\webleft (U\webright )\\ & = f_{*}\webleft (U\webright )^{\textsf{c}}. \end{align*}
This finishes the proof.
Item 9: Interaction With Symmetric Differences
We have
\begin{align*} f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright ) & = \webleft (f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright )\webright )\\ & \subset \webleft (f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\cap V\webright )\webright )\\ & = \webleft (f_{!}\webleft (U\cup V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\cap V\webright )\webright )\\ & \subset f_{!}\webleft (\webleft (U\cup V\webright )\setminus \webleft (U\cap V\webright )\webright )\\ & = f_{!}\webleft (U\mathbin {\triangle }V\webright ), \end{align*}
where we have used:
-
1.
Item 2 of Proposition 4.3.12.1.2 for the first equality.
-
2.
Item 6 of this proposition together with Item 1 of Proposition 4.3.10.1.2 for the first inclusion.
-
3.
Item 5 for the second equality.
-
4.
Item 7 for the second inclusion.
-
5.
Item 2 of Proposition 4.3.12.1.2 for the tchird equality.
Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
Item 10: Interaction With Internal Homs of Powersets
We have
\begin{align*} f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = f_{!}\webleft (U^{\textsf{c}}\webright )\cup f_{!}\webleft (V\webright )\\ & = f_{*}\webleft (U\webright )^{\textsf{c}}\cup f_{!}\webleft (V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y},\end{align*}
where we have used:
-
1.
Item 5 for the second equality.
-
2.
Item 17 for the third equality.
Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
This follows from Item 2 and
,
of
.
Item 12: Oplax Preservation of Limits
The inclusion $f_{!}\webleft (X\webright )\subset Y$ is automatic. See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki] for the other inclusions.
Item 13: Symmetric Strict Monoidality With Respect to Unions
This follows from Item 11.
Item 14: Symmetric Oplax Monoidality With Respect to Intersections
The inclusions in the statement follow from Item 12. Since $\mathcal{P}\webleft (Y\webright )$ is posetal, the commutativity of the diagrams in the definition of a symmetric oplax monoidal functor is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).
Item 15: Interaction With Coproducts
Omitted.
Omitted.
Item 17: Relation to Codirect Images
Applying Item 16 of Proposition 4.6.3.1.7 to $X\setminus U$, we have
\begin{align*} f_{*}\webleft (X\setminus U\webright ) & = B\setminus f_{!}\webleft (X\setminus \webleft (X\setminus U\webright )\webright )\\ & = B\setminus f_{!}\webleft (U\webright ). \end{align*}
Taking complements, we then obtain
\begin{align*} f_{!}\webleft (U\webright ) & = B\setminus \webleft (B\setminus f_{!}\webleft (U\webright )\webright ),\\ & = B\setminus f_{*}\webleft (X\setminus U\webright ), \end{align*}
which finishes the proof.