4.6.1 Direct Images

    Let $f\colon X\to Y$ be a function.

    The direct image function associated to $f$ is the function1

    \[ f_{!}\colon \mathcal{P}(X)\to \mathcal{P}(Y) \]

    defined by2

    \begin{align*} f_{!}(U) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some $x\in U$}\\ & \text{such that $y=f(x)$} \end{aligned} \right\} \\ & = \left\{ y\in Y\ \middle |\ f^{-1}(y)\cap U\neq \text{Ø}\right\} \\ & = \left\{ f(x)\in Y\ \middle |\ x\in U\right\} \end{align*}

    for each $U\in \mathcal{P}(X)$.


    1. 1Further Notation: Also written simply $f\colon \mathcal{P}(X)\to \mathcal{P}(Y)$.
    2. 2Further Terminology: The set $f(U)$ is called the direct image of $U$ by $f$.

    Sometimes one finds the notation

    \[ \exists _{f}\colon \mathcal{P}(X)\to \mathcal{P}(Y) \]

    for $f_{!}$. This notation comes from the fact that the following statements are equivalent, where $y\in Y$ and $U\in \mathcal{P}(X)$:

    • We have $y\in \exists _{f}(U)$.

    • There exists some $x\in U$ such that $f(x)=y$.

    We will not make use of this notation elsewhere in Clowder.

    Notation for direct images between powersets is tricky:

    1. 1.

      Direct images for powersets and presheaves are both adjoint to their corresponding inverse image functors. However, the direct image functor for powersets is a left adjoint, while the direct image functor for presheaves is a right adjoint:

      1. (a)

        Powersets. Given a function $f\colon X\to Y$, we have an inverse image functor

        \[ f^{-1}\colon \mathcal{P}(Y)\to \mathcal{P}(X). \]

        The left adjoint of this functor is the usual direct image, defined above in Definition 4.6.1.1.1.

      2. (b)

        Presheaves. Given a morphism of topological spaces $f\colon X\to Y$, we have an inverse image functor

        \[ f^{-1}\colon \mathsf{PSh}(Y)\to \mathsf{PSh}(X). \]

        The right adjoint of this functor is the direct image functor of presheaves, defined in Unresolved reference.

    2. 2.

      The presheaf direct image functor is denoted $f_{*}$, but the direct image functor for powersets is denoted $f_{!}$ (as it’s a left adjoint).

    3. 3.

      Adding to the confusion, it’s somewhat common for $f_{!}\colon \mathcal{P}(X)\to \mathcal{P}(Y)$ to be denoted $f_{*}$.

    We chose to write $f_{!}$ for the direct image to keep the notation aligned with the following similar adjoint situations:

    Situation

    Adjoint String

    Functoriality

    of Powersets

    $(f_{!}\dashv f^{-1}\dashv f_{*})\colon \mathcal{P}(X)\overset {\rightleftarrows }{\to }\mathcal{P}(Y)$

    Functoriality of

    Presheaf Categories

    $(f_{!}\dashv f^{-1}\dashv f_{*})\colon \mathsf{PSh}(X)\overset {\rightleftarrows }{\to }\mathsf{PSh}(Y)$

    Base Change

    $(f_{!}\dashv f^{*}\dashv f_{*})\colon \mathcal{C}_{/X}\overset {\rightleftarrows }{\to }\mathcal{C}_{/Y}$

    Kan Extensions

    $(F_{!}\dashv F^{*}\dashv F_{*})\colon \mathsf{Fun}(\mathcal{C},\mathcal{E})\overset {\rightleftarrows }{\to }\mathsf{Fun}(\mathcal{D},\mathcal{E})$

    Identifying $\mathcal{P}(X)$ with $\mathsf{Sets}(X,\{ \mathsf{t},\mathsf{f}\} )$ via Item 2 of Proposition 4.5.1.1.4, we see that the direct image function associated to $f$ is equivalently the function

    \[ f_{!}\colon \mathcal{P}(X)\to \mathcal{P}(Y) \]

    defined by

    \begin{align*} f_{!}(\chi _{U}) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Lan}}_{f}(\chi _{U})\\ & = \operatorname*{\operatorname {\mathrm{colim}}}((f\mathbin {\overset {\to }{\times }}\underline{(-_{1})})\overset {\operatorname {\mathrm{\mathrm{pr}}}}{\twoheadrightarrow }A\overset {\chi _{U}}{\to }\{ \mathsf{t},\mathsf{f}\} )\\ & = \operatorname*{\operatorname {\mathrm{colim}}}_{\substack {x\in X\\ \begin{bgroup} f(x)=-_{1} \end{bgroup}}}(\chi _{U}(x))\\ & = \bigvee _{\substack {x\in X\\ \begin{bgroup} f(x)=-_{1} \end{bgroup}}}(\chi _{U}(x)),\end{align*}

    where we have used Unresolved reference for the second equality. In other words, we have

    \begin{align*} [f_{!}(\chi _{U})](y)& =\bigvee _{\substack {x\in X\\ \begin{bgroup} f(x)=y \end{bgroup}}}(\chi _{U}(x))\\ & =\begin{cases} \mathsf{true}& \text{if there exists some $x\in X$ such}\\ & \text{that $f(x)=y$ and $x\in U,$}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & =\begin{cases} \mathsf{true}& \text{if there exists some $x\in U$}\\ & \text{such that $f(x)=y$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\end{align*}

    for each $y\in Y$.

    Let $f\colon X\to Y$ be a function.

    1. 1.

      Functoriality. The assignment $U\mapsto f_{!}(U)$ defines a functor

      \[ f_{!}\colon (\mathcal{P}(X),\subset )\to (\mathcal{P}(Y),\subset ). \]

      In particular, for each $U,V\in \mathcal{P}(X)$, the following condition is satisfied:

      • (★)
      • If $U\subset V$, then $f_{!}(U)\subset f_{!}(V)$.
    2. 2.

      Triple Adjointness. We have a triple adjunction

      witnessed by:

      1. (a)

        Units and counits of the form

        \[ \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}(X)} & \hookrightarrow f^{-1}\circ f_{!},\\ f_{!}\circ f^{-1} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}(Y)},\\ \end{aligned} \qquad \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}(Y)} & \hookrightarrow f_{*}\circ f^{-1},\\ f^{-1}\circ f_{*} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}(X)}. \end{aligned} \]

        In particular:

        • For each $U\in \mathcal{P}(X)$, we have $U\subset f^{-1}(f_{!}(U))$.

        • For each $U\in \mathcal{P}(X)$, we have $f^{-1}(f_{*}(U))\subset U$.

        • For each $V\in \mathcal{P}(Y)$, we have $f_{!}(f^{-1}(V))\subset V$.

        • For each $V\in \mathcal{P}(Y)$, we have $V\subset f_{*}(f^{-1}(V))$.

  • (b)

    Bijections of sets

    \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}(Y)}(f_{!}(U),V) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,f^{-1}(V)),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(f^{-1}(U),V) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,f_{*}(V)), \end{align*}

    natural in $U\in \mathcal{P}(X)$ and $V\in \mathcal{P}(Y)$ and (respectively) $V\in \mathcal{P}(X)$ and $U\in \mathcal{P}(Y)$. In particular:

    1. (i)

      The following conditions are equivalent:

      1. (I)

        We have $f_{!}(U)\subset V$.

      2. (II)

        We have $U\subset f^{-1}(V)$.

    2. (ii)

      The following conditions are equivalent:

      1. (I)

        We have $f^{-1}(U)\subset V$.

      2. (II)

        We have $U\subset f_{*}(V)$.

  • 3.

    Interaction With Unions of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{U\in \mathcal{U}}f_{!}(U)=\bigcup _{V\in f_{!}(\mathcal{U})}V \]

    for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{!})_{!}(\mathcal{U})$.

  • 4.

    Interaction With Intersections of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in \mathcal{U}}f_{!}(U)=\bigcap _{V\in f_{!}(\mathcal{U})}V \]

    for each $\mathcal{U}\in \mathcal{P}(X)$, where $f_{!}(\mathcal{U})\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(f_{!})_{!}(\mathcal{U})$.

  • 5.

    Interaction With Binary Unions. The diagram

    commutes, i.e. we have

    \[ f_{!}(U\cup V)=f_{!}(U)\cup f_{!}(V) \]

    for each $U,V\in \mathcal{P}(X)$.

  • 6.

    Interaction With Binary Intersections. We have a natural transformation

    with components

    \[ f_{!}(U\cap V)\subset f_{!}(U)\cap f_{!}(V) \]

    indexed by $U,V\in \mathcal{P}(X)$.

  • 7.

    Interaction With Differences. We have a natural transformation

    with components

    \[ f_{!}(U)\setminus f_{!}(V)\subset f_{!}(U\setminus V) \]

    indexed by $U,V\in \mathcal{P}(X)$.

  • 8.

    Interaction With Complements. The diagram

    commutes, i.e. we have

    \[ f_{!}(U^{\textsf{c}})=f_{*}(U)^{\textsf{c}} \]

    for each $U\in \mathcal{P}(X)$.

  • 9.

    Interaction With Symmetric Differences. We have a natural transformation

    with components

    \[ f_{!}(U)\mathbin {\triangle }f_{!}(V)\subset f_{!}(U\mathbin {\triangle }V) \]

    indexed by $U,V\in \mathcal{P}(X)$.

  • 10.

    Interaction With Internal Homs of Powersets. The diagram

    commutes, i.e. we have an equality of sets

    \[ f_{!}([U,V]_{X})=[f_{*}(U),f_{!}(V)]_{Y}, \]

    natural in $U,V\in \mathcal{P}(X)$.

  • 11.

    Preservation of Colimits. We have an equality of sets

    \[ f_{!}\left(\bigcup _{i\in I}U_{i}\right)=\bigcup _{i\in I}f_{!}(U_{i}), \]

    natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f_{!}(U)\cup f_{!}(V) = f_{!}(U\cup V),\\ f_{!}(\text{Ø}) = \text{Ø}, \end{gathered} \]

    natural in $U,V\in \mathcal{P}(X)$.

  • 12.

    Oplax Preservation of Limits. We have an inclusion of sets

    \[ f_{!}\left(\bigcap _{i\in I}U_{i}\right)\subset \bigcap _{i\in I}f_{!}(U_{i}), \]

    natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} f_{!}(U\cap V) \subset f_{!}(U)\cap f_{!}(V),\\ f_{!}(X) \subset Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}(X)$.

  • 13.

    Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure

    \[ (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}) \colon (\mathcal{P}(X),\cup ,\text{Ø}) \to (\mathcal{P}(Y),\cup ,\text{Ø}), \]

    being equipped with equalities

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}(U)\cup f_{!}(V) \mathbin {\overset {=}{\rightarrow }}f_{!}(U\cup V),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}\text{Ø}, \end{gathered} \]

    natural in $U,V\in \mathcal{P}(X)$.

  • 14.

    Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure

    \[ (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}) \colon (\mathcal{P}(X),\cap ,X) \to (\mathcal{P}(Y),\cap ,Y), \]

    being equipped with inclusions

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}(U\cap V) \hookrightarrow f_{!}(U)\cap f_{!}(V),\\ f^{\otimes }_{!|\mathbb {1}} \colon f_{!}(X) \hookrightarrow Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}(X)$.

  • 15.

    Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. The diagram

    commutes, i.e. we have

    \[ (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g)_{!}(U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V)=f_{!}(U)\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g_{!}(V) \]

    for each $U\in \mathcal{P}(X)$ and each $V\in \mathcal{P}(Y)$.

  • 16.

    Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. The diagram

    commutes, i.e. we have

    \[ (f\boxtimes _{X\times Y}g)_{!}(U\boxtimes _{X\times Y}V)=f_{!}(U)\boxtimes _{X'\times Y'}g_{!}(V) \]

    for each $U\in \mathcal{P}(X)$ and each $V\in \mathcal{P}(Y)$.

  • 17.

    Relation to Codirect Images. We have

    \begin{align*} f_{!}(U) & = f_{*}(U^{\textsf{c}})^{\textsf{c}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}Y\setminus f_{*}(X\setminus U)\end{align*}

    for each $U\in \mathcal{P}(X)$.

  • Item 1: Functoriality
    Omitted.

    Item 2: Triple Adjointness
    This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Unresolved reference, Unresolved reference of Unresolved reference.

    Item 3: Interaction With Unions of Families of Subsets
    We have

    \begin{align*} \bigcup _{V\in f_{!}(\mathcal{U})}V & = \bigcup _{V\in \left\{ f_{!}(U)\in \mathcal{P}(X)\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcup _{U\in \mathcal{U}}f_{!}(U).\end{align*}

    This finishes the proof.

    Item 4: Interaction With Intersections of Families of Subsets
    We have

    \begin{align*} \bigcap _{V\in f_{!}(\mathcal{U})}V & = \bigcap _{V\in \left\{ f_{!}(U)\in \mathcal{P}(X)\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcap _{U\in \mathcal{U}}f_{!}(U).\end{align*}

    This finishes the proof.

    Item 5: Interaction With Binary Unions
    See [Proof Wiki Contributors, Image of Union Under Mapping — Proof Wiki].

    Item 6: Interaction With Binary Intersections
    See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki].

    Item 7: Interaction With Differences
    See [Proof Wiki Contributors, Image of Set Difference Under Mapping — Proof Wiki].

    Item 8: Interaction With Complements
    Applying Item 17 to $X\setminus U$, we have

    \begin{align*} f_{!}(U^{\textsf{c}}) & = f_{!}(X\setminus U)\\ & = Y\setminus f_{*}(X\setminus (X\setminus U))\\ & = Y\setminus f_{*}(U)\\ & = f_{*}(U)^{\textsf{c}}. \end{align*}

    This finishes the proof.

    Item 9: Interaction With Symmetric Differences
    We have

    \begin{align*} f_{!}(U)\mathbin {\triangle }f_{!}(V) & = (f_{!}(U)\cup f_{!}(V))\setminus (f_{!}(U)\cap f_{!}(V))\\ & \subset (f_{!}(U)\cup f_{!}(V))\setminus (f_{!}(U\cap V))\\ & = (f_{!}(U\cup V))\setminus (f_{!}(U\cap V))\\ & \subset f_{!}((U\cup V)\setminus (U\cap V))\\ & = f_{!}(U\mathbin {\triangle }V), \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.3.12.1.2 for the first equality.

    2. 2.

      Item 6 of this proposition together with Item 1 of Proposition 4.3.10.1.2 for the first inclusion.

    3. 3.

      Item 5 for the second equality.

    4. 4.

      Item 7 for the second inclusion.

    5. 5.

      Item 2 of Proposition 4.3.12.1.2 for the third equality.

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 10: Interaction With Internal Homs of Powersets
    We have

    \begin{align*} f_{!}([U,V]_{X}) & = f_{!}(U^{\textsf{c}}\cup V)\\ & = f_{!}(U^{\textsf{c}})\cup f_{!}(V)\\ & = f_{*}(U)^{\textsf{c}}\cup f_{!}(V)\\ & = [f_{*}(U),f_{!}(V)]_{Y},\end{align*}

    where we have used:

    1. 1.

      Item 5 for the second equality.

    2. 2.

      Item 17 for the third equality.

    Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

    Item 11: Preservation of Colimits
    This follows from Item 2 and Unresolved reference, Unresolved reference of Unresolved reference.1

    Item 12: Oplax Preservation of Limits
    The inclusion $f_{!}(X)\subset Y$ is automatic. See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki] for the other inclusions.

    Item 13: Symmetric Strict Monoidality With Respect to Unions
    This follows from Item 11.

    Item 14: Symmetric Oplax Monoidality With Respect to Intersections
    The inclusions in the statement follow from Item 12. Since $\mathcal{P}(Y)$ is posetal, the commutativity of the diagrams in the definition of a symmetric oplax monoidal functor is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

    Item 15: Interaction With Coproducts
    Omitted.

    Item 16: Interaction With Products
    Omitted.

    Item 17: Relation to Codirect Images
    Applying Item 16 of Proposition 4.6.3.1.7 to $X\setminus U$, we have

    \begin{align*} f_{*}(X\setminus U) & = B\setminus f_{!}(X\setminus (X\setminus U))\\ & = B\setminus f_{!}(U). \end{align*}

    Taking complements, we then obtain

    \begin{align*} f_{!}(U) & = B\setminus (B\setminus f_{!}(U)),\\ & = B\setminus f_{*}(X\setminus U), \end{align*}

    which finishes the proof.

    Let $f\colon X\to Y$ and $g\colon Y\to Z$ be functions.

    1. 1.

      Functionality I. The assignment $f\mapsto f_{!}$ defines a function

      \[ (-)_{*|X,Y}\colon \mathsf{Sets}(X,Y) \to \mathsf{Sets}(\mathcal{P}(X),\mathcal{P}(Y)). \]
    2. 2.

      Functionality II. The assignment $f\mapsto f_{!}$ defines a function

      \[ (-)_{*|X,Y}\colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}((\mathcal{P}(X),\subset ),(\mathcal{P}(Y),\subset )). \]
    3. 3.

      Interaction With Identities. We have

      \[ (\operatorname {\mathrm{id}}_{X})_{!}=\operatorname {\mathrm{id}}_{\mathcal{P}(X)}. \]
    4. 4.

      Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: