Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure
\[ (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}) \colon (\mathcal{P}(X),\cup ,\text{Ø}) \to (\mathcal{P}(Y),\cup ,\text{Ø}), \]
being equipped with equalities
\[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}(U)\cup f_{!}(V) \mathbin {\overset {=}{\rightarrow }}f_{!}(U\cup V),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}\text{Ø}, \end{gathered} \]
natural in $U,V\in \mathcal{P}(X)$.