4.6.1 Direct Images
Let $f\colon X\to Y$ be a function.
The direct image function associated to $f$ is the function
\[ f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]
defined by
\begin{align*} f_{!}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ y\in Y\ \middle |\ \begin{aligned} & \text{there exists some $x\in U$}\\ & \text{such that $y=f\webleft (x\webright )$} \end{aligned} \right\} \\ & = \left\{ f\webleft (x\webright )\in Y\ \middle |\ x\in U\right\} \end{align*}
for each $U\in \mathcal{P}\webleft (X\webright )$.
Sometimes one finds the notation
\[ \exists _{f}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]
for $f_{!}$. This notation comes from the fact that the following statements are equivalent, where $y\in Y$ and $U\in \mathcal{P}\webleft (X\webright )$:
-
•
We have $y\in \exists _{f}\webleft (U\webright )$.
-
•
There exists some $x\in U$ such that $f\webleft (x\webright )=y$.
We will not make use of this notation elsewhere in Clowder.
ゴ
ゴ
ゴ
Notation for direct images between powersets is tricky:
-
1.
Direct images for powersets and presheaves are both adjoint to their corresponding inverse image functors. However, the direct image functor for powersets is a left adjoint, while the direct image functor for presheaves is a right adjoint:
-
(a)
Powersets. Given a function $f\colon X\to Y$, we have an inverse image functor
\[ f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright ). \]
The left adjoint of this functor is the usual direct image, defined above in Definition 4.6.1.1.1.
-
(b)
Presheaves. Given a morphism of topological spaces $f\colon X\to Y$, we have an inverse image functor
\[ f^{-1}\colon \mathsf{PSh}\webleft (Y\webright )\to \mathsf{PSh}\webleft (X\webright ). \]
The right adjoint of this functor is the direct image functor of presheaves, defined in
.
-
2.
The presheaf direct image functor is denoted $f_{*}$, but the direct image functor for powersets is denoted $f_{!}$ (as it’s a left adjoint).
-
3.
Adding to the confusion, it’s somewhat common for $f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright )$ to be denoted $f_{*}$.
We chose to write $f_{!}$ for the direct image to keep the notation aligned with the following similar adjoint situations:
Situation
|
Adjoint String
|
Functoriality
of Powersets
|
$\webleft (f_{!}\dashv f^{-1}\dashv f_{*}\webright )\colon \mathcal{P}\webleft (X\webright )\overset {\rightleftarrows }{\to }\mathcal{P}\webleft (Y\webright )$
|
Functoriality of
Presheaf Categories
|
$\webleft (f_{!}\dashv f^{-1}\dashv f_{*}\webright )\colon \mathsf{PSh}\webleft (X\webright )\overset {\rightleftarrows }{\to }\mathsf{PSh}\webleft (Y\webright )$
|
Base Change
|
$\webleft (f_{!}\dashv f^{*}\dashv f_{*}\webright )\colon \mathcal{C}_{/X}\overset {\rightleftarrows }{\to }\mathcal{C}_{/Y}$
|
Kan Extensions
|
$\webleft (F_{!}\dashv F^{*}\dashv F_{*}\webright )\colon \mathsf{Fun}\webleft (\mathcal{C},\mathcal{E}\webright )\overset {\rightleftarrows }{\to }\mathsf{Fun}\webleft (\mathcal{D},\mathcal{E}\webright )$
|
ゴ
ゴ
ゴ
Let $f\colon X\to Y$ be a function.
-
1.
Functoriality. The assignment $U\mapsto f_{!}\webleft (U\webright )$ defines a functor
\[ f_{!}\colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright ). \]
In particular, for each $U,V\in \mathcal{P}\webleft (X\webright )$, the following condition is satisfied:
- (★)
If $U\subset V$, then $f_{!}\webleft (U\webright )\subset f_{!}\webleft (V\webright )$.
-
2.
Triple Adjointness. We have a triple adjunction
witnessed by:
-
(a)
Units and counits of the form
\[ \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )} & \hookrightarrow f^{-1}\circ f_{!},\\ f_{!}\circ f^{-1} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (Y\webright )},\\ \end{aligned} \qquad \begin{aligned} \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (Y\webright )} & \hookrightarrow f_{*}\circ f^{-1},\\ f^{-1}\circ f_{*} & \hookrightarrow \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}, \end{aligned} \]
having components of the form
\[ \begin{gathered} U \subset f^{-1}\webleft (f_{!}\webleft (U\webright )\webright ),\\ f_{!}\webleft (f^{-1}\webleft (V\webright )\webright ) \subset V, \end{gathered} \qquad \begin{gathered} V \subset f_{*}\webleft (f^{-1}\webleft (V\webright )\webright ),\\ f^{-1}\webleft (f_{*}\webleft (U\webright )\webright ) \subset U \end{gathered} \]
indexed by $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$.
-
(b)
Bijections of sets
\begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (Y\webright )}\webleft (f_{!}\webleft (U\webright ),V\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f_{*}\webleft (V\webright )\webright ), \end{align*}
natural in $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$ and (respectively) $V\in \mathcal{P}\webleft (X\webright )$ and $U\in \mathcal{P}\webleft (Y\webright )$. In particular:
-
(i)
The following conditions are equivalent:
-
(I)
We have $f_{!}\webleft (U\webright )\subset V$.
-
(II)
We have $U\subset f^{-1}\webleft (V\webright )$.
-
(ii)
The following conditions are equivalent:
-
(I)
We have $f^{-1}\webleft (U\webright )\subset V$.
-
(II)
We have $U\subset f_{*}\webleft (V\webright )$.
-
3.
Interaction With Unions of Families of Subsets. The diagram
commutes, i.e. we have
\[ \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.
-
4.
Interaction With Intersections of Families of Subsets. The diagram
commutes, i.e. we have
\[ \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]
for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.
-
5.
Interaction With Binary Unions. The diagram
commutes, i.e. we have
\[ f_{!}\webleft (U\cup V\webright )=f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
6.
Interaction With Binary Intersections. We have a natural transformation
with components
\[ f_{!}\webleft (U\cap V\webright )\subset f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ) \]
indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.
-
7.
Interaction With Differences. We have a natural transformation
with components
\[ f_{!}\webleft (U\webright )\setminus f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\setminus V\webright ) \]
indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.
-
8.
Interaction With Complements. The diagram
commutes, i.e. we have
\[ f_{!}\webleft (U^{\textsf{c}}\webright )=f_{*}\webleft (U\webright )^{\textsf{c}} \]
for each $U\in \mathcal{P}\webleft (X\webright )$.
-
9.
Interaction With Symmetric Differences. We have a natural transformation
with components
\[ f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\mathbin {\triangle }V\webright ) \]
indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.
-
10.
Interaction With Internal Homs of Powersets. The diagram
commutes, i.e. we have an equality of sets
\[ f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright )=\webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}, \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
11.
Preservation of Colimits. We have an equality of sets
\[ f_{!}\left(\bigcup _{i\in I}U_{i}\right)=\bigcup _{i\in I}f_{!}\webleft (U_{i}\webright ), \]
natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have equalities
\[ \begin{gathered} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) = f_{!}\webleft (U\cup V\webright ),\\ f_{!}\webleft (\text{Ø}\webright ) = \text{Ø}, \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
12.
Oplax Preservation of Limits. We have an inclusion of sets
\[ f_{!}\left(\bigcap _{i\in I}U_{i}\right)\subset \bigcap _{i\in I}f_{!}\webleft (U_{i}\webright ), \]
natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have inclusions
\[ \begin{gathered} f_{!}\webleft (U\cap V\webright ) \subset f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ),\\ f_{!}\webleft (X\webright ) \subset Y, \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
13.
Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure
\[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ), \]
being equipped with equalities
\[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f_{!}\webleft (U\cup V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}\text{Ø}, \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
14.
Symmetric Oplax Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric oplax monoidal structure
\[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cap ,X\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cap ,Y\webright ), \]
being equipped with inclusions
\[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\cap V\webright ) \hookrightarrow f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon f_{!}\webleft (X\webright ) \hookrightarrow Y, \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
15.
Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
\[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )_{!}\webleft (U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V\webright )=f_{!}\webleft (U\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g_{!}\webleft (V\webright ) \]
for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.
-
16.
Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
\[ \webleft (f\boxtimes _{X\times Y} g\webright )_{!}\webleft (U\boxtimes _{X\times Y}V\webright )=f_{!}\webleft (U\webright )\boxtimes _{X'\times Y'}g_{!}\webleft (V\webright ) \]
for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.
-
17.
Relation to Codirect Images. We have
\begin{align*} f_{!}\webleft (U\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}Y\setminus f_{*}\webleft (X\setminus U\webright )\end{align*}
for each $U\in \mathcal{P}\webleft (X\webright )$.
Omitted.
This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and
,
of
.
Item 3: Interaction With Unions of Families of Subsets
We have
\begin{align*} \bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcup _{V\in \left\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}
This finishes the proof.
Item 4: Interaction With Intersections of Families of Subsets
We have
\begin{align*} \bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcap _{V\in \left\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\right\} }V\\ & = \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}
This finishes the proof.
Item 5: Interaction With Binary Unions
See [Proof Wiki Contributors, Image of Union Under Mapping — Proof Wiki].
Item 6: Interaction With Binary Intersections
See [Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki].
Item 7: Interaction With Differences
See [Proof Wiki Contributors, Image of Set Difference Under Mapping — Proof Wiki].
Item 8: Interaction With Complements
Applying Item 17 to $X\setminus U$, we have
\begin{align*} f_{!}\webleft (U^{\textsf{c}}\webright ) & = f_{!}\webleft (X\setminus U\webright )\\ & = Y\setminus f_{*}\webleft (X\setminus \webleft (X\setminus U\webright )\webright )\\ & = Y\setminus f_{*}\webleft (U\webright )\\ & = f_{*}\webleft (U\webright )^{\textsf{c}}. \end{align*}
This finishes the proof.
Item 9: Interaction With Symmetric Differences
We have
\begin{align*} f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright ) & = \webleft (f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright )\webright )\\ & \subset \webleft (f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\cap V\webright )\webright )\\ & = \webleft (f_{!}\webleft (U\cup V\webright )\webright )\setminus \webleft (f_{!}\webleft (U\cap V\webright )\webright )\\ & \subset f_{!}\webleft (\webleft (U\cup V\webright )\setminus \webleft (U\cap V\webright )\webright )\\ & = f_{!}\webleft (U\mathbin {\triangle }V\webright ), \end{align*}
where we have used:
-
1.
Item 2 of Proposition 4.3.12.1.2 for the first equality.
-
2.
Item 6 of this proposition together with Item 1 of Proposition 4.3.10.1.2 for the first inclusion.
4.
Item 7 for the second inclusion.
5.
Item 2 of Proposition 4.3.12.1.2 for the tchird equality.
Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
Item 10: Interaction With Internal Homs of Powersets
We have
\begin{align*} f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = f_{!}\webleft (U^{\textsf{c}}\webright )\cup f_{!}\webleft (V\webright )\\ & = f_{*}\webleft (U\webright )^{\textsf{c}}\cup f_{!}\webleft (V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y},\end{align*}
where we have used:
-
1.
Item 5 for the second equality.
-
2.
Item 17 for the third equality.
Since $\mathcal{P}\webleft (Y\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.
This follows from
Item 2 and

,

of

.
Item 12: Oplax Preservation of Limits
The inclusion $f_{!}\webleft (X\webright )\subset Y$ is automatic. See
[Proof Wiki Contributors, Image of Intersection Under Mapping — Proof Wiki] for the other inclusions.
Item 13: Symmetric Strict Monoidality With Respect to Unions
This follows from
Item 11.
Item 14: Symmetric Oplax Monoidality With Respect to Intersections
The inclusions in the statement follow from
Item 12. Since $\mathcal{P}\webleft (Y\webright )$ is posetal, the commutativity of the diagrams in the definition of a symmetric oplax monoidal functor is automatic (
Chapter 11: Categories,
Item 4 of
Proposition 11.2.7.1.2).
Item 15: Interaction With Coproducts
Omitted.
Omitted.
Item 17: Relation to Codirect Images
Applying
Item 16 of
Proposition 4.6.3.1.7 to $X\setminus U$, we have
\begin{align*} f_{*}\webleft (X\setminus U\webright ) & = B\setminus f_{!}\webleft (X\setminus \webleft (X\setminus U\webright )\webright )\\ & = B\setminus f_{!}\webleft (U\webright ). \end{align*}
Taking complements, we then obtain
\begin{align*} f_{!}\webleft (U\webright ) & = B\setminus \webleft (B\setminus f_{!}\webleft (U\webright )\webright ),\\ & = B\setminus f_{*}\webleft (X\setminus U\webright ), \end{align*}
which finishes the proof.
Let $f\colon X\to Y$ be a function.
-
1.
Functionality I. The assignment $f\mapsto f_{!}$ defines a function
\[ \webleft (-\webright )_{*|X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (X\webright ),\mathcal{P}\webleft (Y\webright )\webright ). \]
-
2.
Functionality II. The assignment $f\mapsto f_{!}$ defines a function
\[ \webleft (-\webright )_{*|X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright )\webright ). \]
-
3.
Interaction With Identities. For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have
\[ \webleft (\operatorname {\mathrm{id}}_{X}\webright )_{!}=\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )}. \]
-
4.
Interaction With Composition. For each pair of composable functions $f\colon X\to Y$ and $g\colon Y\to Z$, we have
There is nothing to prove.
This follows from Item 1 of Proposition 4.6.1.1.5.
Item 3: Interaction With Identities
This follows from Remark 4.6.1.1.4 and
,
of
.
Item 4: Interaction With Composition
This follows from Remark 4.6.1.1.4 and
,
of
.