Symmetric Strict Monoidality With Respect to Unions. The direct image function of Item 1 has a symmetric strict monoidal structure
\[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ), \]
being equipped with equalities
\[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f_{!}\webleft (U\cup V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\mathbin {\overset {=}{\rightarrow }}\text{Ø}, \end{gathered} \]
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.