4.4.7 The Internal Hom of a Powerset

Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

The internal Hom of $\mathcal{P}\webleft (X\webright )$ from $U$ to $V$ is the subset $\webleft [U,V\webright ]_{X}$1 of $X$ defined by

\begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & = \webleft (U\setminus V\webright )^{\textsf{c}}\end{align*}

where $U^{\textsf{c}}$ is the complement of $U$ of Definition 4.3.11.1.1.


  1. 1Further Notation: Also written $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )$.

We have

\begin{align*} \webleft (U\setminus V\webright )^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \webleft (U\setminus V\webright )\\ & = \webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\\ & = V\cup \webleft (X\setminus U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}V\cup U^{\textsf{c}}\\ & = U^{\textsf{c}}\cup V,\end{align*}

where we have used:

  1. 1.

    Item 10 of Proposition 4.3.10.1.2 for the second equality.

  2. 2.

    Item 4 of Proposition 4.3.9.1.2 for the third equality.

  3. 3.

    Item 4 of Proposition 4.3.8.1.2 for the last equality.

This finishes the proof.

Henning Makholm suggests the following heuristic intuition for the internal Hom of $\mathcal{P}\webleft (X\webright )$ from $U$ to $V$ ([B., Show that the powerset partial order is a cartesian closed category]):

  1. 1.

    Since products in $\mathcal{P}\webleft (X\webright )$ are given by binary intersections (Item 1 of Proposition 4.4.1.1.4), the right adjoint $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,-\webright )$ of $U\cap -$ may be thought of as a function type $\webleft [U,V\webright ]$.

  2. 2.

    Under the Curry–Howard correspondence (Unresolved reference), the function type $\webleft [U,V\webright ]$ corresponds to implication $U\Rightarrow V$.

  3. 3.

    Implication $U\Rightarrow V$ is logically equivalent to $\neg U\vee V$.

  4. 4.

    The expression $\neg U\vee V$ then corresponds to the set $U^{\textsf{c}}\cup V$ in $\mathcal{P}\webleft (X\webright )$.

  5. 5.

    The set $U^{\textsf{c}}\vee V$ turns out to indeed be the internal Hom of $\mathcal{P}\webleft (X\webright )$.

Let $X$ be a set.

  1. 1.

    Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}$ define functors

    \[ \begin{array}{ccc} {\webleft [U,-\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-,V\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-_{1},-_{2}\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )}. \end{array} \]

    In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:

    1. (a)

      If $U\subset A$, then $\webleft [A,V\webright ]_{X}\subset \webleft [U,V\webright ]_{X}$.

    2. (b)

      If $V\subset B$, then $\webleft [U,V\webright ]_{X}\subset \webleft [U,B\webright ]_{X}$.

    3. (c)

      If $U\subset A$ and $V\subset B$, then $\webleft [A,V\webright ]_{X}\subset \webleft [U,B\webright ]_{X}$.

  2. 2.

    Adjointness. We have adjunctions

    witnessed by bijections

    \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\webleft [V,W\webright ]_{X}\webright ),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\webleft [U,W\webright ]_{X}\webright ). \end{align*}

    In particular, the following statements hold for each $U,V,W\in \mathcal{P}\webleft (X\webright )$:

    1. (a)

      The following conditions are equivalent:

      1. (i)

        We have $U\cap V\subset W$.

      2. (ii)

        We have $U\subset \webleft [V,W\webright ]_{X}$.

    2. (b)

      The following conditions are equivalent:

      1. (i)

        We have $U\cap V\subset W$.

      2. (ii)

        We have $V\subset \webleft [U,W\webright ]_{X}$.

  3. 3.

    Interaction With the Empty Set I. We have

    \begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}},\\ \webleft [\text{Ø},V\webright ]_{X} & = X, \end{align*}

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  4. 4.

    Interaction With $X$. We have

    \begin{align*} \webleft [U,X\webright ]_{X} & = X,\\ \webleft [X,V\webright ]_{X} & = V, \end{align*}

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  5. 5.

    Interaction With the Empty Set II. The functor

    \[ D_{X} \colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ) \]

    defined by

    \begin{align*} D_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [-,\text{Ø}\webright ]_{X}\\ & = \webleft (-\webright )^{\textsf{c}}\end{align*}

    is an involutory isomorphism of categories, making $\text{Ø}$ into a dualising object for $\webleft (\mathcal{P}\webleft (X\webright ),\cap ,X,\webleft [-,-\webright ]_{X}\webright )$ in the sense of Unresolved reference. In particular:

    1. (a)

      The diagram

      commutes, i.e. we have

      \[ \underbrace{D_{X}\webleft (D_{X}\webleft (U\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=U \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    2. (b)

      The diagram

      commutes, i.e. we have

      \[ \underbrace{D_{X}\webleft (U\cap D_{X}\webleft (V\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U\cap \webleft [V,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=\webleft [U,V\webright ]_{X} \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. 6.

    Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.

    1. (a)

      Interaction With Direct Images. The diagram

      commutes, i.e. we have

      \[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    2. (b)

      Interaction With Inverse Images. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    3. (c)

      Interaction With Codirect Images. The diagram

      commutes, i.e. we have

      \[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

  7. 7.

    Interaction With Unions of Families of Subsets I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcup _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \left[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\right]_{X} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  8. 8.

    Interaction With Unions of Families of Subsets II. The diagram

    commutes, i.e. we have

    \[ \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X}= \bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

  9. 9.

    Interaction With Unions of Families of Subsets III. The diagram

    commutes, i.e. we have

    \[ \left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}= \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  10. 10.

    Interaction With Intersections of Families of Subsets I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  11. 11.

    Interaction With Intersections of Families of Subsets II. The diagram

    commutes, i.e. we have

    \[ \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X}= \bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

  12. 12.

    Interaction With Intersections of Families of Subsets III. The diagram

    commutes, i.e. we have

    \[ \left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}= \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  13. 13.

    Interaction With Binary Unions. We have equalities of sets

    \begin{align*} \webleft [U\cap V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cap W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X} \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  14. 14.

    Interaction With Binary Intersections. We have equalities of sets

    \begin{align*} \webleft [U\cup V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cup W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X} \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  15. 15.

    Interaction With Differences. We have equalities of sets

    \begin{align*} \webleft [U\setminus V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}\\ & = \webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X},\\ \webleft [U,V\setminus W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright )\end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  16. 16.

    Interaction With Complements. We have equalities of sets

    \begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & = U\cup V,\\ \webleft [U,V^{\textsf{c}}\webright ]_{X} & = U\cap V,\\ \webleft [U,V\webright ]^{\textsf{c}}_{X} & = U\setminus V \end{align*}

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  17. 17.

    Interaction With Characteristic Functions. We have

    \[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright )=\operatorname*{\operatorname {\mathrm{max}}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  18. 18.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have an equality of sets

    \[ f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright )=\webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}, \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  19. 19.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have an equality of sets

    \[ f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright )=\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X}, \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  20. 20.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ \webleft [f_{!}\webleft (U\webright ),f_{*}\webleft (V\webright )\webright ]_{Y}\subset f_{*}\webleft (\webleft [U,V\webright ]_{X}\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
Since $\mathcal{P}\webleft (X\webright )$ is posetal, it suffices to prove Item 1a, Item 1b, and Item 1c.

  1. 1.

    Proof of Item 1a: We have

    \begin{align*} \webleft [A,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}, \end{align*}

    where we have used:

    1. (a)

      Item 1 of Proposition 4.3.11.1.2, which states that if $U\subset A$, then $A^{\textsf{c}}\subset U^{\textsf{c}}$.

    2. (b)

      Item 1a of Item 1 of Proposition 4.3.11.1.2, which states that if $A^{\textsf{c}}\subset U^{\textsf{c}}$, then $A^{\textsf{c}}\cup K\subset U^{\textsf{c}}\cup K$ for any $K\in \mathcal{P}\webleft (X\webright )$.

  2. 2.

    Proof of Item 1b: We have

    \begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup B\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,B\webright ]_{X}, \end{align*}

    where we have used Item 1b of Item 1 of Proposition 4.3.11.1.2, which states that if $V\subset B$, then $K\cup V\subset K\cup B$ for any $K\in \mathcal{P}\webleft (X\webright )$.

  3. 3.

    Proof of Item 1c: We have

    \begin{align*} \webleft [A,V\webright ]_{X} & \subset \webleft [U,V\webright ]_{X}\\ & \subset \webleft [U,B\webright ]_{X}, \end{align*}

    where we have used Item 1a and Item 1b.

This finishes the proof.

Item 2: Adjointness
This is a repetition of Item 2 of Proposition 4.3.9.1.2 and is proved there.

Item 3: Interaction With the Empty Set I
We have

\begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \text{Ø}\\ & = U^{\textsf{c}}, \end{align*}

where we have used Item 3 of Proposition 4.3.8.1.2, and we have

\begin{align*} \webleft [\text{Ø},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \text{Ø}\webright )\cup V\\ & = X\cup V\\ & = X, \end{align*}

where we have used:

  1. 1.

    Item 12 of Proposition 4.3.10.1.2 for the first equality.

  2. 2.

    Item 5 of Proposition 4.3.8.1.2 for the last equality.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

Item 4: Interaction With $X$
We have

\begin{align*} \webleft [U,X\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup X\\ & = X, \end{align*}

where we have used Item 5 of Proposition 4.3.8.1.2, and we have

\begin{align*} \webleft [X,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus X\webright )\cup V\\ & = \text{Ø}\cup V\\ & = V, \end{align*}

where we have used Item 3 of Proposition 4.3.8.1.2 for the last equality. Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

Item 5: Interaction With the Empty Set II
We have

\begin{align*} D_{X}\webleft (D_{X}\webleft (U\webright )\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\\ & = \webleft [U^{\textsf{c}},\text{Ø}\webright ]_{X}\\ & = \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U, \end{align*}

where we have used:

  1. 1.

    Item 3 for the second and third equalities.

  2. 2.

    Item 3 of Proposition 4.3.11.1.2 for the fourth equality.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2), and thus we have

\[ \webleft [\webleft [-,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\cong \operatorname {\mathrm{id}}_{\mathcal{P}\webleft (X\webright )} \]

This finishes the proof.

Item 6: Interaction With the Empty Set III
Since $D_{X}=\webleft (-\webright )^{\textsf{c}}$, this is essentially a repetition of the corresponding results for $\webleft (-\webright )^{\textsf{c}}$, namely Item 5, Item 6, and Item 7 of Proposition 4.3.11.1.2.

Item 7: Interaction With Unions of Families of Subsets I
By Item 3 of Proposition 4.4.7.1.3, we have

\begin{align*} \webleft [\mathcal{U},\text{Ø}\webright ]_{\mathcal{P}\webleft (X\webright )} & = \mathcal{U}^{\textsf{c}},\\ \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}}. \end{align*}

With this, the counterexample given in the proof of Item 10 of Proposition 4.3.6.1.2 then applies.

Item 8: Interaction With Unions of Families of Subsets II
We have

\begin{align*} \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcup _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcap _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}

where we have used:

  1. 1.

    Item 11 of Proposition 4.3.6.1.2 for the second equality.

  2. 2.

    Item 6 of Proposition 4.3.7.1.2 for the third equality.

This finishes the proof.

Item 9: Interaction With Unions of Families of Subsets III
We have

\begin{align*} \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \left(\bigcup _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}. \end{align*}

where we have used Item 6. This finishes the proof.

Item 10: Interaction With Intersections of Families of Subsets I
Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $. We have

\begin{align*} \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W & = \bigcap _{W\in \mathcal{P}\webleft (X\webright )}W\\ & = \left\{ 0,1\right\} , \end{align*}

whereas

\begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} & = \webleft [\left\{ 0,1\right\} ,\left\{ 0\right\} \webright ]\\ & = \left\{ 0\right\} , \end{align*}

Thus we have

\[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W=\left\{ 0,1\right\} \neq \left\{ 0\right\} =\left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \]

This finishes the proof.

Item 11: Interaction With Intersections of Families of Subsets II
We have

\begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcap _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcup _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}

where we have used:

  1. 1.

    Item 12 of Proposition 4.3.6.1.2 for the second equality.

  2. 2.

    Item 6 of Proposition 4.3.7.1.2 for the third equality.

This finishes the proof.

Item 12: Interaction With Intersections of Families of Subsets III
We have

\begin{align*} \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \left(\bigcap _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \end{align*}

where we have used Item 6. This finishes the proof.

Item 13: Interaction With Binary Unions
We have

\begin{align*} \webleft [U\cap V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cap V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X}, \end{align*}

where we have used:

  1. 1.

    Item 2 of Proposition 4.3.11.1.2 for the second equality.

  2. 2.

    Item 8 of Proposition 4.3.8.1.2 for the third equality.

  3. 3.

    Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the fourth equality.

For the second equality in the statement, we have

\begin{align*} \webleft [U,V\cap W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cap W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cap \webleft (U^{\textsf{c}}\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X}, \end{align*}

where we have used Item 6 of Proposition 4.3.8.1.2 for the second equality.

Item 14: Interaction With Binary Intersections
We have

\begin{align*} \webleft [U\cup V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cup V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cap V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cap \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X}, \end{align*}

where we have used:

  1. 1.

    Item 2 of Proposition 4.3.11.1.2 for the second equality.

  2. 2.

    Item 6 of Proposition 4.3.8.1.2 for the third equality.

Now, for the second equality in the statement, we have

\begin{align*} \webleft [U,V\cup W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cup \webleft (U^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X}, \end{align*}

where we have used:

  1. 1.

    Item 8 of Proposition 4.3.8.1.2 for the second equality.

  2. 2.

    Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the third equality.

This finishes the proof.

Item 15: Interaction With Differences
We have

\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X}, \end{align*}

where we have used:

  1. 1.

    Item 10 of Proposition 4.3.10.1.2 for the third equality.

  2. 2.

    Item 4 of Proposition 4.3.9.1.2 for the fourth equality.

  3. 3.

    Item 8 of Proposition 4.3.8.1.2 for the sixth equality.

  4. 4.

    Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.

We also have

\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (\webleft (V^{\textsf{c}}\webright )^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}, \end{align*}

where we have used:

  1. 1.

    Item 10 of Proposition 4.3.10.1.2 for the third equality.

  2. 2.

    Item 4 of Proposition 4.3.9.1.2 for the fourth equality.

  3. 3.

    Item 8 of Proposition 4.3.8.1.2 for the sixth equality.

  4. 4.

    Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.

  5. 5.

    Item 3 of Proposition 4.3.11.1.2 for the eighth equality.

Now, for the second equality in the statement, we have

\begin{align*} \webleft [U,V\setminus W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\setminus W\webright )\\ & = \webleft (V\setminus W\webright )\cup U^{\textsf{c}}\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus U^{\textsf{c}}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus \webleft (X\setminus U\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \webleft (W\setminus X\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \text{Ø}\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\cap U\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (U\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright ) \end{align*}

where we have used:

  1. 1.

    Item 4 of Proposition 4.3.8.1.2 for the second equality.

  2. 2.

    Item 4 of Proposition 4.3.10.1.2 for the third equality.

  3. 3.

    Item 10 of Proposition 4.3.10.1.2 for the fifth equality.

  4. 4.

    Item 13 of Proposition 4.3.10.1.2 for the sixth equality.

  5. 5.

    Item 3 of Proposition 4.3.8.1.2 for the seventh equality.

  6. 6.

    Item 5 of Proposition 4.3.9.1.2 for the eighth equality.

This finishes the proof.

Item 16: Interaction With Complements
We have

\begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\cup V,\\ & = U\cup V, \end{align*}

where we have used Item 3 of Proposition 4.3.11.1.2. We also have

\begin{align*} \webleft [U,V^{\textsf{c}}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V^{\textsf{c}}\\ & = U\cap V\\ \end{align*}

where we have used Item 2 of Proposition 4.3.11.1.2. Finally, we have

\begin{align*} \webleft [U,V\webright ]^{\textsf{c}}_{X} & = \webleft (\webleft (U\setminus V\webright )^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U\setminus V, \end{align*}

where we have used Item 2 of Proposition 4.3.11.1.2.

Item 17: Interaction With Characteristic Functions
We have

\begin{align*} \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{U^{\textsf{c}}\cup V}\webleft (x\webright )\\ & = \operatorname*{\operatorname {\mathrm{max}}}\webleft (\chi _{U^{\textsf{c}}},\chi _{V}\webright )\\ & = \operatorname*{\operatorname {\mathrm{max}}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ), \end{align*}

where we have used:

  1. 1.

    Item 10 of Proposition 4.3.8.1.2 for the second equality.

  2. 2.

    Item 4 of Proposition 4.3.11.1.2 for the third equality.

This finishes the proof.

Item 18: Interaction With Direct Images
This is a repetition of Item 10 of Proposition 4.6.1.1.5 and is proved there.

Item 19: Interaction With Inverse Images
This is a repetition of Item 10 of Proposition 4.6.2.1.3 and is proved there.

Item 20: Interaction With Codirect Images
This is a repetition of Item 9 of Proposition 4.6.3.1.7 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: