The complement of $U$ is the set $U^{\textsf{c}}$ defined by
Let $X$ be a set and let $U\in \mathcal{P}(X)$.
The complement of $U$ is the set $U^{\textsf{c}}$ defined by
Let $X$ be a set.
Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor
In particular, the following statements hold for each $U,V\in \mathcal{P}(X)$:
De Morgan’s Laws. The diagrams
for each $U,V\in \mathcal{P}(X)$.
Involutority. The diagram
for each $U\in \mathcal{P}(X)$.
Interaction With Characteristic Functions. We have
for each $U\in \mathcal{P}(X)$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}(X)$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}(X)$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}(X)$.
If $x \in U$, then $x \not\in U^{\textsf{c}}$. So $\chi _{U}(x) = 1$ and
If $x \not\in U$, then $x \in U^{\textsf{c}}$. So $\chi _{U}(x) = 0$ and
Hence, the equation holds for all $x \in X$.