4.3.11 Complements

    Let $X$ be a set and let $U\in \mathcal{P}\webleft (X\webright )$.

    The complement of $U$ is the set $U^{\textsf{c}}$ defined by

    \begin{align*} U^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in X\ \middle |\ a\not\in U\right\} .\end{align*}

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor

      \[ \webleft (-\webright )^{\textsf{c}}\colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ). \]

      In particular, the following statements hold for each $U,V\in \mathcal{P}\webleft (X\webright )$:

      • (★)
      • If $U\subset V$, then $V^{\textsf{c}}\subset U^{\textsf{c}}$.
    2. 2.

      De Morgan’s Laws. The diagrams

      commute, i.e. we have equalities of sets

      \begin{align*} \webleft (U\cup V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cap V^{\textsf{c}},\\ \webleft (U\cap V\webright )^{\textsf{c}} & = U^{\textsf{c}}\cup V^{\textsf{c}} \end{align*}

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

    3. 3.

      Involutority. The diagram

      commutes, i.e. we have

      \[ \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}=U \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 4.

    Interaction With Characteristic Functions. We have

    \[ \chi _{U^{\textsf{c}}}\equiv 1-\chi _{U}\ \ (\mathrm{mod}\ 2) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 5.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U^{\textsf{c}}\webright )=f_{*}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 6.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}\webleft (U^{\textsf{c}}\webright )=f^{-1}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  • 7.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{*}\webleft (U^{\textsf{c}}\webright )=f_{!}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  • Item 1: Functoriality
    This follows from Item 1 of Proposition 4.3.10.1.2.

    Item 2: De Morgan’s Laws
    See [Proof Wiki Contributors, De Morgan's Laws (Set Theory) — Proof Wiki].

    Item 3: Involutority
    See [Proof Wiki Contributors, Complement of Complement — Proof Wiki].

    Item 4: Interaction With Characteristic Functions
    Omitted.

    Item 5: Interaction With Direct Images
    This is a repetition of Item 8 of Proposition 4.6.1.1.5 and is proved there.

    Item 6: Interaction With Inverse Images
    This is a repetition of Item 8 of Proposition 4.6.2.1.3 and is proved there.

    Item 7: Interaction With Codirect Images
    This is a repetition of Item 7 of Proposition 4.6.3.1.7 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: