The complement of $U$ is the set $U^{\textsf{c}}$ defined by
Let $X$ be a set and let $U\in \mathcal{P}\webleft (X\webright )$.
The complement of $U$ is the set $U^{\textsf{c}}$ defined by
Let $X$ be a set.
Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor
In particular, the following statements hold for each $U,V\in \mathcal{P}\webleft (X\webright )$:
De Morgan’s Laws. The diagrams
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
Involutority. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Interaction With Characteristic Functions. We have
for each $U\in \mathcal{P}\webleft (X\webright )$.
Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. The diagram
for each $U\in \mathcal{P}\webleft (X\webright )$.