4.3.11 Complements

Let $X$ be a set and let $U\in \mathcal{P}(X)$.

The complement of $U$ is the set $U^{\textsf{c}}$ defined by

\begin{align*} U^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in X\ \middle |\ a\not\in U\right\} .\end{align*}

Let $X$ be a set.

  1. 1.

    Functoriality. The assignment $U\mapsto U^{\textsf{c}}$ defines a functor

    \[ (-)^{\textsf{c}}\colon \mathcal{P}(X)^{\mathsf{op}}\to \mathcal{P}(X). \]

    In particular, the following statements hold for each $U,V\in \mathcal{P}(X)$:

    • (★)
    • If $U\subset V$, then $V^{\textsf{c}}\subset U^{\textsf{c}}$.
  2. 2.

    De Morgan’s Laws. The diagrams

    commute, i.e. we have equalities of sets

    \begin{align*} (U\cup V)^{\textsf{c}} & = U^{\textsf{c}}\cap V^{\textsf{c}},\\ (U\cap V)^{\textsf{c}} & = U^{\textsf{c}}\cup V^{\textsf{c}} \end{align*}

    for each $U,V\in \mathcal{P}(X)$.

  3. 3.

    Involutority. The diagram

    commutes, i.e. we have

    \[ (U^{\textsf{c}})^{\textsf{c}}=U \]

    for each $U\in \mathcal{P}(X)$.

  4. 4.

    Interaction With Characteristic Functions. We have

    \[ \chi _{U^{\textsf{c}}}=1-\chi _{U} \]

    for each $U\in \mathcal{P}(X)$.

  5. 5.

    Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{!}(U^{\textsf{c}})=f_{*}(U)^{\textsf{c}} \]

    for each $U\in \mathcal{P}(X)$.

  6. 6.

    Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f^{-1}(U^{\textsf{c}})=f^{-1}(U)^{\textsf{c}} \]

    for each $U\in \mathcal{P}(X)$.

  7. 7.

    Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have

    \[ f_{*}(U^{\textsf{c}})=f_{!}(U)^{\textsf{c}} \]

    for each $U\in \mathcal{P}(X)$.

Item 1: Functoriality
This follows from Item 1 of Proposition 4.3.10.1.2.

Item 2: De Morgan’s Laws
See [Proof Wiki Contributors, De Morgan's Laws (Set Theory) — Proof Wiki].

Item 3: Involutority
See [Proof Wiki Contributors, Complement of Complement — Proof Wiki].

Item 4: Interaction With Characteristic Functions
We consider the two cases $x \in U, x \not\in U$.

  1. 1.

    If $x \in U$, then $x \not\in U^{\textsf{c}}$. So $\chi _{U}(x) = 1$ and

    \begin{align*} \chi _{U^{\textsf{c}}}(x) & = 0\\ & = 1-\chi _{U}(x).\end{align*}
  2. 2.

    If $x \not\in U$, then $x \in U^{\textsf{c}}$. So $\chi _{U}(x) = 0$ and

    \begin{align*} \chi _{U^{\textsf{c}}}(x) & = 1\\ & = 1-\chi _{U}(x).\end{align*}

Hence, the equation holds for all $x \in X$.

Item 5: Interaction With Direct Images
This is a repetition of Item 8 of Proposition 4.6.1.1.5 and is proved there.

Item 6: Interaction With Inverse Images
This is a repetition of Item 8 of Proposition 4.6.2.1.3 and is proved there.

Item 7: Interaction With Codirect Images
This is a repetition of Item 7 of Proposition 4.6.3.1.7 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: