4.4.7 The Internal Hom of a Powerset
Let $X$ be a set and let $U,V\in \mathcal{P}(X)$.
The internal Hom of $\mathcal{P}(X)$ from $U$ to $V$ is the subset $[U,V]_{X}$ of $X$ given by
\begin{align*} [U,V]_{X} & = U^{\textsf{c}}\cup V\\ & = (U\setminus V)^{\textsf{c}}\end{align*}
where $U^{\textsf{c}}$ is the complement of $U$ of Definition 4.3.11.1.1.
Proof of the Equality $U^{\textsf{c}}\cup V=(U\setminus V)^{\textsf{c}}$
We have
\begin{align*} (U\setminus V)^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus (U\setminus V)\\ & = (X\cap V)\cup (X\setminus U)\\ & = V\cup (X\setminus U)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}V\cup U^{\textsf{c}}\\ & = U^{\textsf{c}}\cup V,\end{align*}
where we have used:
-
1.
Item 10 of Proposition 4.3.10.1.2 for the second equality.
-
2.
Item 4 of Proposition 4.3.9.1.2 for the third equality.
-
3.
Item 4 of Proposition 4.3.8.1.2 for the last equality.
This finishes the proof.
Proof that $U^{\textsf{c}}\cup V$ Is Indeed the Internal Hom
This follows from Item 2 of Proposition 4.3.9.1.2.
Let $X$ be a set.
-
1.
Functoriality. The assignments $U,V,(U,V)\mapsto \mathbf{Hom}_{\mathcal{P}(X)}$ define functors
\[ \begin{array}{ccc} {[U,-]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X),\supset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )},\\ {[-,V]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X),\subset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )},\\ {[-_{1},-_{2}]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X)\times \mathcal{P}(X),\subset \times \supset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )}. \end{array} \]
In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}(X)$:
-
(a)
If $U\subset A$, then $[A,V]_{X}\subset [U,V]_{X}$.
-
(b)
If $V\subset B$, then $[U,V]_{X}\subset [U,B]_{X}$.
-
(c)
If $U\subset A$ and $V\subset B$, then $[A,V]_{X}\subset [U,B]_{X}$.
-
2.
Adjointness. We have adjunctions
witnessed by bijections
\begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,[V,W]_{X}),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(V,[U,W]_{X}). \end{align*}
In particular, the following statements hold for each $U,V,W\in \mathcal{P}(X)$:
-
(a)
The following conditions are equivalent:
-
(i)
We have $U\cap V\subset W$.
-
(ii)
We have $U\subset [V,W]_{X}$.
-
(b)
The following conditions are equivalent:
-
(i)
We have $U\cap V\subset W$.
-
(ii)
We have $V\subset [U,W]_{X}$.
-
3.
Interaction With the Empty Set I. We have
\begin{align*} [U,\text{Ø}]_{X} & = U^{\textsf{c}},\\ [\text{Ø},V]_{X} & = X, \end{align*}
natural in $U,V\in \mathcal{P}(X)$.
-
4.
Interaction With $X$. We have
\begin{align*} [U,X]_{X} & = X,\\ [X,V]_{X} & = V, \end{align*}
natural in $U,V\in \mathcal{P}(X)$.
-
5.
Interaction With the Empty Set II. The functor
\[ D_{X} \colon \mathcal{P}(X)^{\mathsf{op}}\to \mathcal{P}(X) \]
defined by
\begin{align*} D_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[-,\text{Ø}]_{X}\\ & = (-)^{\textsf{c}}\end{align*}
is an involutory isomorphism of categories, making $\text{Ø}$ into a dualising object for $(\mathcal{P}(X),\cap ,X,[-,-]_{X})$ in the sense of
. In particular:
-
(a)
The diagram
commutes, i.e. we have
\[ \underbrace{D_{X}(D_{X}(U))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[[U,\text{Ø}]_{X},\text{Ø}]_{X}}=U \]
for each $U\in \mathcal{P}(X)$.
-
(b)
The diagram
commutes, i.e. we have
\[ \underbrace{D_{X}(U\cap D_{X}(V))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U\cap [V,\text{Ø}]_{X},\text{Ø}]_{X}}=[U,V]_{X} \]
for each $U,V\in \mathcal{P}(X)$.
-
6.
Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.
-
(a)
Interaction With Direct Images. The diagram
commutes, i.e. we have
\[ f_{!}(D_{X}(U))=D_{Y}(f_{*}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
(b)
Interaction With Inverse Images. The diagram
commutes, i.e. we have
\[ f^{-1}(D_{Y}(U))=D_{X}(f^{-1}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
(c)
Interaction With Codirect Images. The diagram
commutes, i.e. we have
\[ f_{*}(D_{X}(U))=D_{Y}(f_{!}(U)) \]
for each $U\in \mathcal{P}(X)$.
-
7.
Interaction With Unions of Families of Subsets I. The diagram
does not commute in general, i.e. we may have
\[ \bigcup _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W\neq \left[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\right]_{X} \]
in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
-
8.
Interaction With Unions of Families of Subsets II. The diagram
commutes, i.e. we have
\[ \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X}= \bigcap _{U\in \mathcal{U}}[U,V]_{X} \]
for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.
-
9.
Interaction With Unions of Families of Subsets III. The diagram
commutes, i.e. we have
\[ \left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}= \bigcup _{V\in \mathcal{V}}[U,V]_{X} \]
for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
-
10.
Interaction With Intersections of Families of Subsets I. The diagram
does not commute in general, i.e. we may have
\[ \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W\neq \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} \]
in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.
-
11.
Interaction With Intersections of Families of Subsets II. The diagram
commutes, i.e. we have
\[ \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X}= \bigcup _{U\in \mathcal{U}}[U,V]_{X} \]
for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.
-
12.
Interaction With Intersections of Families of Subsets III. The diagram
commutes, i.e. we have
\[ \left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}= \bigcap _{V\in \mathcal{V}}[U,V]_{X} \]
for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.
-
13.
Interaction With Binary Unions. We have equalities of sets
\begin{align*} [U\cap V,W]_{X} & = [U,W]_{X}\cup [V,W]_{X},\\ [U,V\cap W]_{X} & = [U,V]_{X}\cap [U,W]_{X} \end{align*}
for each $U,V,W\in \mathcal{P}(X)$.
-
14.
Interaction With Binary Intersections. We have equalities of sets
\begin{align*} [U\cup V,W]_{X} & = [U,W]_{X}\cap [V,W]_{X},\\ [U,V\cup W]_{X} & = [U,V]_{X}\cup [U,W]_{X} \end{align*}
for each $U,V,W\in \mathcal{P}(X)$.
-
15.
Interaction With Differences. We have equalities of sets
\begin{align*} [U\setminus V,W]_{X} & = [U,W]_{X}\cup [V^{\textsf{c}},W]_{X}\\ & = [U,W]_{X}\cup [U,V]_{X},\\ [U,V\setminus W]_{X} & = [U,V]_{X}\setminus (U\cap W)\end{align*}
for each $U,V,W\in \mathcal{P}(X)$.
-
16.
Interaction With Complements. We have equalities of sets
\begin{align*} [U^{\textsf{c}},V]_{X} & = U\cup V,\\ [U,V^{\textsf{c}}]_{X} & = U\cap V,\\ [U,V]^{\textsf{c}}_{X} & = U\setminus V \end{align*}
for each $U,V\in \mathcal{P}(X)$.
-
17.
Interaction With Characteristic Functions. We have
\[ \chi _{[U,V]_{\mathcal{P}(X)}}(x)=\operatorname*{\operatorname {\mathrm{max}}}(1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}) \]
for each $U,V\in \mathcal{P}(X)$.
-
18.
Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram
commutes, i.e. we have an equality of sets
\[ f_{!}([U,V]_{X})=[f_{*}(U),f_{!}(V)]_{Y}, \]
natural in $U,V\in \mathcal{P}(X)$.
-
19.
Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram
commutes, i.e. we have an equality of sets
\[ f^{-1}([U,V]_{Y})=[f^{-1}(U),f^{-1}(V)]_{X}, \]
natural in $U,V\in \mathcal{P}(X)$.
-
20.
Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. We have a natural transformation
with components
\[ [f_{!}(U),f_{*}(V)]_{Y}\subset f_{*}([U,V]_{X}) \]
indexed by $U,V\in \mathcal{P}(X)$.
Since $\mathcal{P}(X)$ is posetal, it suffices to prove Item 1a, Item 1b, and Item 1c.
-
1.
Proof of Item 1a: We have
\begin{align*} [A,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}, \end{align*}
where we have used:
-
(a)
Item 1 of Proposition 4.3.11.1.2, which states that if $U\subset A$, then $A^{\textsf{c}}\subset U^{\textsf{c}}$.
-
(b)
Item 1a of Item 1 of Proposition 4.3.11.1.2, which states that if $A^{\textsf{c}}\subset U^{\textsf{c}}$, then $A^{\textsf{c}}\cup K\subset U^{\textsf{c}}\cup K$ for any $K\in \mathcal{P}(X)$.
-
2.
Proof of Item 1b: We have
\begin{align*} [U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup B\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,B]_{X}, \end{align*}
where we have used Item 1b of Item 1 of Proposition 4.3.11.1.2, which states that if $V\subset B$, then $K\cup V\subset K\cup B$ for any $K\in \mathcal{P}(X)$.
-
3.
Proof of Item 1c: We have
\begin{align*} [A,V]_{X} & \subset [U,V]_{X}\\ & \subset [U,B]_{X}, \end{align*}
where we have used Item 1a and Item 1b.
This finishes the proof.
This is a repetition of Item 2 of Proposition 4.3.9.1.2 and is proved there.
Item 3: Interaction With the Empty Set I
We have
\begin{align*} [U,\text{Ø}]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \text{Ø}\\ & = U^{\textsf{c}}, \end{align*}
where we have used Item 3 of Proposition 4.3.8.1.2, and we have
\begin{align*} [\text{Ø},V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus \text{Ø})\cup V\\ & = X\cup V\\ & = X, \end{align*}
where we have used:
-
1.
Item 12 of Proposition 4.3.10.1.2 for the first equality.
-
2.
Item 5 of Proposition 4.3.8.1.2 for the last equality.
Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).
We have
\begin{align*} [U,X]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup X\\ & = X, \end{align*}
where we have used Item 5 of Proposition 4.3.8.1.2, and we have
\begin{align*} [X,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus X)\cup V\\ & = \text{Ø}\cup V\\ & = V, \end{align*}
where we have used Item 3 of Proposition 4.3.8.1.2 for the last equality. Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).
Item 5: Interaction With the Empty Set II
We have
\begin{align*} D_{X}(D_{X}(U)) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[[U,\text{Ø}]_{X},\text{Ø}]_{X}\\ & = [U^{\textsf{c}},\text{Ø}]_{X}\\ & = (U^{\textsf{c}})^{\textsf{c}}\\ & = U, \end{align*}
where we have used:
2.
Item 3 of Proposition 4.3.11.1.2 for the fourth equality.
Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2), and thus we have
\[ [[-,\text{Ø}]_{X},\text{Ø}]_{X}\cong \operatorname {\mathrm{id}}_{\mathcal{P}(X)} \]
This finishes the proof.
Item 6: Interaction With the Empty Set III
Since $D_{X}=(-)^{\textsf{c}}$, this is essentially a repetition of the corresponding results for $(-)^{\textsf{c}}$, namely
Item 5,
Item 6, and
Item 7 of
Proposition 4.3.11.1.2.
Item 7: Interaction With Unions of Families of Subsets I
By
Item 3 of
Proposition 4.4.7.1.3, we have
\begin{align*} [\mathcal{U},\text{Ø}]_{\mathcal{P}(X)} & = \mathcal{U}^{\textsf{c}},\\ [U,\text{Ø}]_{X} & = U^{\textsf{c}}. \end{align*}
With this, the counterexample given in the proof of Item 10 of Proposition 4.3.6.1.2 then applies.
Item 8: Interaction With Unions of Families of Subsets II
We have
\begin{align*} \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcup _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcap _{U\in \mathcal{U}}(U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in \mathcal{U}}[U,V]_{X},\end{align*}
where we have used:
-
1.
Item 11 of Proposition 4.3.6.1.2 for the second equality.
-
2.
Item 6 of Proposition 4.3.7.1.2 for the third equality.
This finishes the proof.
Item 9: Interaction With Unions of Families of Subsets III
We have
\begin{align*} \bigcup _{V\in \mathcal{V}}[U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}}(U^{\textsf{c}}\cup V)\\ & = U^{\textsf{c}}\cup \left(\bigcup _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}. \end{align*}
where we have used Item 6. This finishes the proof.
Item 10: Interaction With Intersections of Families of Subsets I
Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $. We have
\begin{align*} \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W & = \bigcap _{W\in \mathcal{P}(X)}W\\ & = \left\{ 0,1\right\} , \end{align*}
whereas
\begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} & = [\left\{ 0,1\right\} ,\left\{ 0\right\} ]\\ & = \left\{ 0\right\} , \end{align*}
Thus we have
\[ \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W=\left\{ 0,1\right\} \neq \left\{ 0\right\} =\left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \]
This finishes the proof.
Item 11: Interaction With Intersections of Families of Subsets II
We have
\begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcap _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcup _{U\in \mathcal{U}}(U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{U\in \mathcal{U}}[U,V]_{X},\end{align*}
where we have used:
-
1.
Item 12 of Proposition 4.3.6.1.2 for the second equality.
-
2.
Item 6 of Proposition 4.3.7.1.2 for the third equality.
This finishes the proof.
Item 12: Interaction With Intersections of Families of Subsets III
We have
\begin{align*} \bigcap _{V\in \mathcal{V}}[U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{V\in \mathcal{V}}(U^{\textsf{c}}\cup V)\\ & = U^{\textsf{c}}\cup \left(\bigcap _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \end{align*}
where we have used Item 6. This finishes the proof.
Item 13: Interaction With Binary Unions
We have
\begin{align*} [U\cap V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\cap V)^{\textsf{c}}\cup W\\ & = (U^{\textsf{c}}\cup V^{\textsf{c}})\cup W\\ & = (U^{\textsf{c}}\cup V^{\textsf{c}})\cup (W\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup (V^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [V,W]_{X}, \end{align*}
where we have used:
-
1.
Item 2 of Proposition 4.3.11.1.2 for the second equality.
-
2.
Item 8 of Proposition 4.3.8.1.2 for the third equality.
-
3.
Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the fourth equality.
For the second equality in the statement, we have
\begin{align*} [U,V\cap W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\cap W)\\ & = (U^{\textsf{c}}\cup V)\cap (U^{\textsf{c}}\cap W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\cap [U,W]_{X}, \end{align*}
where we have used Item 6 of Proposition 4.3.8.1.2 for the second equality.
Item 14: Interaction With Binary Intersections
We have
\begin{align*} [U\cup V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\cup V)^{\textsf{c}}\cup W\\ & = (U^{\textsf{c}}\cap V^{\textsf{c}})\cup W\\ & = (U^{\textsf{c}}\cup W)\cap (V^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cap [V,W]_{X}, \end{align*}
where we have used:
-
1.
Item 2 of Proposition 4.3.11.1.2 for the second equality.
-
2.
Item 6 of Proposition 4.3.8.1.2 for the third equality.
Now, for the second equality in the statement, we have
\begin{align*} [U,V\cup W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup U^{\textsf{c}})\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup V)\cup (U^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\cup [U,W]_{X}, \end{align*}
where we have used:
-
1.
Item 8 of Proposition 4.3.8.1.2 for the second equality.
-
2.
Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the third equality.
This finishes the proof.
Item 15: Interaction With Differences
We have
\begin{align*} [U\setminus V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\setminus V)^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus (U\setminus V))\cup W\\ & = ((X\cap V)\cup (X\setminus U))\cup W\\ & = (V\cup (X\setminus U))\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\cup W\\ & = (V\cup (U^{\textsf{c}}\cup U^{\textsf{c}}))\cup W\\ & = (U^{\textsf{c}}\cup W)\cup (U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [U,V]_{X}, \end{align*}
where we have used:
-
1.
Item 10 of Proposition 4.3.10.1.2 for the third equality.
-
2.
Item 4 of Proposition 4.3.9.1.2 for the fourth equality.
-
3.
Item 8 of Proposition 4.3.8.1.2 for the sixth equality.
-
4.
Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.
We also have
\begin{align*} [U\setminus V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\setminus V)^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus (U\setminus V))\cup W\\ & = ((X\cap V)\cup (X\setminus U))\cup W\\ & = (V\cup (X\setminus U))\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\cup W\\ & = (V\cup U^{\textsf{c}})\cup (W\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup ((V^{\textsf{c}})^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [V^{\textsf{c}},W]_{X}, \end{align*}
where we have used:
-
1.
Item 10 of Proposition 4.3.10.1.2 for the third equality.
-
2.
Item 4 of Proposition 4.3.9.1.2 for the fourth equality.
-
3.
Item 8 of Proposition 4.3.8.1.2 for the sixth equality.
-
4.
Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.
-
5.
Item 3 of Proposition 4.3.11.1.2 for the eighth equality.
Now, for the second equality in the statement, we have
\begin{align*} [U,V\setminus W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\setminus W)\\ & = (V\setminus W)\cup U^{\textsf{c}}\\ & = (V\cup U^{\textsf{c}})\setminus (W\setminus U^{\textsf{c}})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\setminus (W\setminus (X\setminus U))\\ & = (V\cup U^{\textsf{c}})\setminus ((W\cap U)\cup (W\setminus X))\\ & = (V\cup U^{\textsf{c}})\setminus ((W\cap U)\cup \text{Ø})\\ & = (V\cup U^{\textsf{c}})\setminus (W\cap U)\\ & = (V\cup U^{\textsf{c}})\setminus (U\cap W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\setminus (U\cap W) \end{align*}
where we have used:
-
1.
Item 4 of Proposition 4.3.8.1.2 for the second equality.
-
2.
Item 4 of Proposition 4.3.10.1.2 for the third equality.
-
3.
Item 10 of Proposition 4.3.10.1.2 for the fifth equality.
-
4.
Item 13 of Proposition 4.3.10.1.2 for the sixth equality.
-
5.
Item 3 of Proposition 4.3.8.1.2 for the seventh equality.
-
6.
Item 5 of Proposition 4.3.9.1.2 for the eighth equality.
This finishes the proof.
Item 16: Interaction With Complements
We have
\begin{align*} [U^{\textsf{c}},V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U^{\textsf{c}})^{\textsf{c}}\cup V,\\ & = U\cup V, \end{align*}
where we have used Item 3 of Proposition 4.3.11.1.2. We also have
\begin{align*} [U,V^{\textsf{c}}]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V^{\textsf{c}}\\ & = U\cap V\\ \end{align*}
where we have used Item 2 of Proposition 4.3.11.1.2. Finally, we have
\begin{align*} [U,V]^{\textsf{c}}_{X} & = ((U\setminus V)^{\textsf{c}})^{\textsf{c}}\\ & = U\setminus V, \end{align*}
where we have used Item 2 of Proposition 4.3.11.1.2.
Item 17: Interaction With Characteristic Functions
We have
\begin{align*} \chi _{[U,V]_{\mathcal{P}(X)}}(x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{U^{\textsf{c}}\cup V}(x)\\ & = \operatorname*{\operatorname {\mathrm{max}}}(\chi _{U^{\textsf{c}}},\chi _{V})\\ & = \operatorname*{\operatorname {\mathrm{max}}}(1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}), \end{align*}
where we have used:
-
1.
Item 10 of Proposition 4.3.8.1.2 for the second equality.
-
2.
Item 4 of Proposition 4.3.11.1.2 for the third equality.
This finishes the proof.
Item 18: Interaction With Direct Images
This is a repetition of
Item 10 of
Proposition 4.6.1.1.5 and is proved there.
Item 19: Interaction With Inverse Images
This is a repetition of
Item 10 of
Proposition 4.6.2.1.3 and is proved there.
Item 20: Interaction With Codirect Images
This is a repetition of
Item 9 of
Proposition 4.6.3.1.7 and is proved there.