4.4.7 The Internal Hom of a Powerset

    Let $X$ be a set and let $U,V\in \mathcal{P}(X)$.

    The internal Hom of $\mathcal{P}(X)$ from $U$ to $V$ is the subset $[U,V]_{X}$1 of $X$ given by

    \begin{align*} [U,V]_{X} & = U^{\textsf{c}}\cup V\\ & = (U\setminus V)^{\textsf{c}}\end{align*}

    where $U^{\textsf{c}}$ is the complement of $U$ of Definition 4.3.11.1.1.


    1. 1Further Notation: Also written $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$.

    Proof of the Equality $U^{\textsf{c}}\cup V=(U\setminus V)^{\textsf{c}}$
    We have

    \begin{align*} (U\setminus V)^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus (U\setminus V)\\ & = (X\cap V)\cup (X\setminus U)\\ & = V\cup (X\setminus U)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}V\cup U^{\textsf{c}}\\ & = U^{\textsf{c}}\cup V,\end{align*}

    where we have used:

    1. 1.

      Item 10 of Proposition 4.3.10.1.2 for the second equality.

    2. 2.

      Item 4 of Proposition 4.3.9.1.2 for the third equality.

    3. 3.

      Item 4 of Proposition 4.3.8.1.2 for the last equality.

    This finishes the proof.

    Proof that $U^{\textsf{c}}\cup V$ Is Indeed the Internal Hom
    This follows from Item 2 of Proposition 4.3.9.1.2.

    Henning Makholm suggests the following heuristic intuition for the internal Hom of $\mathcal{P}(X)$ from $U$ to $V$ ([B., Show that the powerset partial order is a cartesian closed category]):

    1. 1.

      Since products in $\mathcal{P}(X)$ are given by binary intersections (Item 1 of Proposition 4.4.1.1.4), the right adjoint $\mathbf{Hom}_{\mathcal{P}(X)}(U,-)$ of $U\cap -$ may be thought of as a function type $[U,V]$.

    2. 2.

      Under the Curry–Howard correspondence (Unresolved reference), the function type $[U,V]$ corresponds to implication $U\Rightarrow V$.

    3. 3.

      Implication $U\Rightarrow V$ is logically equivalent to $\neg U\vee V$.

    4. 4.

      The expression $\neg U\vee V$ then corresponds to the set $U^{\textsf{c}}\cup V$ in $\mathcal{P}(X)$.

    5. 5.

      The set $U^{\textsf{c}}\vee V$ turns out to indeed be the internal Hom of $\mathcal{P}(X)$.

    Let $X$ be a set.

    1. 1.

      Functoriality. The assignments $U,V,(U,V)\mapsto \mathbf{Hom}_{\mathcal{P}(X)}$ define functors

      \[ \begin{array}{ccc} {[U,-]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X),\supset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )},\\ {[-,V]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X),\subset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )},\\ {[-_{1},-_{2}]_{X}}\colon \mkern -15mu & {(\mathcal{P}(X)\times \mathcal{P}(X),\subset \times \supset )} \mkern -17.5mu& {}\mathbin {\to }{(\mathcal{P}(X),\subset )}. \end{array} \]

      In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}(X)$:

      1. (a)

        If $U\subset A$, then $[A,V]_{X}\subset [U,V]_{X}$.

      2. (b)

        If $V\subset B$, then $[U,V]_{X}\subset [U,B]_{X}$.

      3. (c)

        If $U\subset A$ and $V\subset B$, then $[A,V]_{X}\subset [U,B]_{X}$.

    2. 2.

      Adjointness. We have adjunctions

      witnessed by bijections

      \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U,[V,W]_{X}),\\ \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(U\cap V,W) & \cong \operatorname {\mathrm{Hom}}_{\mathcal{P}(X)}(V,[U,W]_{X}). \end{align*}

      In particular, the following statements hold for each $U,V,W\in \mathcal{P}(X)$:

      1. (a)

        The following conditions are equivalent:

        1. (i)

          We have $U\cap V\subset W$.

        2. (ii)

          We have $U\subset [V,W]_{X}$.

      2. (b)

        The following conditions are equivalent:

        1. (i)

          We have $U\cap V\subset W$.

        2. (ii)

          We have $V\subset [U,W]_{X}$.

    3. 3.

      Interaction With the Empty Set I. We have

      \begin{align*} [U,\text{Ø}]_{X} & = U^{\textsf{c}},\\ [\text{Ø},V]_{X} & = X, \end{align*}

      natural in $U,V\in \mathcal{P}(X)$.

    4. 4.

      Interaction With $X$. We have

      \begin{align*} [U,X]_{X} & = X,\\ [X,V]_{X} & = V, \end{align*}

      natural in $U,V\in \mathcal{P}(X)$.

    5. 5.

      Interaction With the Empty Set II. The functor

      \[ D_{X} \colon \mathcal{P}(X)^{\mathsf{op}}\to \mathcal{P}(X) \]

      defined by

      \begin{align*} D_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[-,\text{Ø}]_{X}\\ & = (-)^{\textsf{c}}\end{align*}

      is an involutory isomorphism of categories, making $\text{Ø}$ into a dualising object for $(\mathcal{P}(X),\cap ,X,[-,-]_{X})$ in the sense of Unresolved reference. In particular:

      1. (a)

        The diagram

        commutes, i.e. we have

        \[ \underbrace{D_{X}(D_{X}(U))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[[U,\text{Ø}]_{X},\text{Ø}]_{X}}=U \]

        for each $U\in \mathcal{P}(X)$.

      2. (b)

        The diagram

        commutes, i.e. we have

        \[ \underbrace{D_{X}(U\cap D_{X}(V))}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U\cap [V,\text{Ø}]_{X},\text{Ø}]_{X}}=[U,V]_{X} \]

        for each $U,V\in \mathcal{P}(X)$.

    6. 6.

      Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.

      1. (a)

        Interaction With Direct Images. The diagram

        commutes, i.e. we have

        \[ f_{!}(D_{X}(U))=D_{Y}(f_{*}(U)) \]

        for each $U\in \mathcal{P}(X)$.

      2. (b)

        Interaction With Inverse Images. The diagram

        commutes, i.e. we have

        \[ f^{-1}(D_{Y}(U))=D_{X}(f^{-1}(U)) \]

        for each $U\in \mathcal{P}(X)$.

      3. (c)

        Interaction With Codirect Images. The diagram

        commutes, i.e. we have

        \[ f_{*}(D_{X}(U))=D_{Y}(f_{!}(U)) \]

        for each $U\in \mathcal{P}(X)$.

    7. 7.

      Interaction With Unions of Families of Subsets I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcup _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W\neq \left[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\right]_{X} \]

      in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    8. 8.

      Interaction With Unions of Families of Subsets II. The diagram

      commutes, i.e. we have

      \[ \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X}= \bigcap _{U\in \mathcal{U}}[U,V]_{X} \]

      for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.

    9. 9.

      Interaction With Unions of Families of Subsets III. The diagram

      commutes, i.e. we have

      \[ \left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}= \bigcup _{V\in \mathcal{V}}[U,V]_{X} \]

      for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    10. 10.

      Interaction With Intersections of Families of Subsets I. The diagram

      does not commute in general, i.e. we may have

      \[ \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W\neq \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} \]

      in general, where $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$.

    11. 11.

      Interaction With Intersections of Families of Subsets II. The diagram

      commutes, i.e. we have

      \[ \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X}= \bigcup _{U\in \mathcal{U}}[U,V]_{X} \]

      for each $\mathcal{U}\in \mathcal{P}(\mathcal{P}(X))$ and each $V\in \mathcal{P}(X)$.

    12. 12.

      Interaction With Intersections of Families of Subsets III. The diagram

      commutes, i.e. we have

      \[ \left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}= \bigcap _{V\in \mathcal{V}}[U,V]_{X} \]

      for each $U\in \mathcal{P}(X)$ and each $\mathcal{V}\in \mathcal{P}(\mathcal{P}(X))$.

    13. 13.

      Interaction With Binary Unions. We have equalities of sets

      \begin{align*} [U\cap V,W]_{X} & = [U,W]_{X}\cup [V,W]_{X},\\ [U,V\cap W]_{X} & = [U,V]_{X}\cap [U,W]_{X} \end{align*}

      for each $U,V,W\in \mathcal{P}(X)$.

    14. 14.

      Interaction With Binary Intersections. We have equalities of sets

      \begin{align*} [U\cup V,W]_{X} & = [U,W]_{X}\cap [V,W]_{X},\\ [U,V\cup W]_{X} & = [U,V]_{X}\cup [U,W]_{X} \end{align*}

      for each $U,V,W\in \mathcal{P}(X)$.

    15. 15.

      Interaction With Differences. We have equalities of sets

      \begin{align*} [U\setminus V,W]_{X} & = [U,W]_{X}\cup [V^{\textsf{c}},W]_{X}\\ & = [U,W]_{X}\cup [U,V]_{X},\\ [U,V\setminus W]_{X} & = [U,V]_{X}\setminus (U\cap W)\end{align*}

      for each $U,V,W\in \mathcal{P}(X)$.

    16. 16.

      Interaction With Complements. We have equalities of sets

      \begin{align*} [U^{\textsf{c}},V]_{X} & = U\cup V,\\ [U,V^{\textsf{c}}]_{X} & = U\cap V,\\ [U,V]^{\textsf{c}}_{X} & = U\setminus V \end{align*}

      for each $U,V\in \mathcal{P}(X)$.

    17. 17.

      Interaction With Characteristic Functions. We have

      \[ \chi _{[U,V]_{\mathcal{P}(X)}}(x)=\operatorname*{\operatorname {\mathrm{max}}}(1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}) \]

      for each $U,V\in \mathcal{P}(X)$.

    18. 18.

      Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

      commutes, i.e. we have an equality of sets

      \[ f_{!}([U,V]_{X})=[f_{*}(U),f_{!}(V)]_{Y}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    19. 19.

      Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

      commutes, i.e. we have an equality of sets

      \[ f^{-1}([U,V]_{Y})=[f^{-1}(U),f^{-1}(V)]_{X}, \]

      natural in $U,V\in \mathcal{P}(X)$.

    20. 20.

      Interaction With Codirect Images. Let $f\colon X\to Y$ be a function. We have a natural transformation

      with components

      \[ [f_{!}(U),f_{*}(V)]_{Y}\subset f_{*}([U,V]_{X}) \]

      indexed by $U,V\in \mathcal{P}(X)$.

    Item 1: Functoriality
    Since $\mathcal{P}(X)$ is posetal, it suffices to prove Item 1a, Item 1b, and Item 1c.

    1. 1.

      Proof of Item 1a: We have

      \begin{align*} [A,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}, \end{align*}

      where we have used:

      1. (a)

        Item 1 of Proposition 4.3.11.1.2, which states that if $U\subset A$, then $A^{\textsf{c}}\subset U^{\textsf{c}}$.

      2. (b)

        Item 1a of Item 1 of Proposition 4.3.11.1.2, which states that if $A^{\textsf{c}}\subset U^{\textsf{c}}$, then $A^{\textsf{c}}\cup K\subset U^{\textsf{c}}\cup K$ for any $K\in \mathcal{P}(X)$.

    2. 2.

      Proof of Item 1b: We have

      \begin{align*} [U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup B\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,B]_{X}, \end{align*}

      where we have used Item 1b of Item 1 of Proposition 4.3.11.1.2, which states that if $V\subset B$, then $K\cup V\subset K\cup B$ for any $K\in \mathcal{P}(X)$.

    3. 3.

      Proof of Item 1c: We have

      \begin{align*} [A,V]_{X} & \subset [U,V]_{X}\\ & \subset [U,B]_{X}, \end{align*}

      where we have used Item 1a and Item 1b.

    This finishes the proof.

    Item 2: Adjointness
    This is a repetition of Item 2 of Proposition 4.3.9.1.2 and is proved there.

    Item 3: Interaction With the Empty Set I
    We have

    \begin{align*} [U,\text{Ø}]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \text{Ø}\\ & = U^{\textsf{c}}, \end{align*}

    where we have used Item 3 of Proposition 4.3.8.1.2, and we have

    \begin{align*} [\text{Ø},V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus \text{Ø})\cup V\\ & = X\cup V\\ & = X, \end{align*}

    where we have used:

    1. 1.

      Item 12 of Proposition 4.3.10.1.2 for the first equality.

    2. 2.

      Item 5 of Proposition 4.3.8.1.2 for the last equality.

    Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

    Item 4: Interaction With $X$
    We have

    \begin{align*} [U,X]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup X\\ & = X, \end{align*}

    where we have used Item 5 of Proposition 4.3.8.1.2, and we have

    \begin{align*} [X,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus X)\cup V\\ & = \text{Ø}\cup V\\ & = V, \end{align*}

    where we have used Item 3 of Proposition 4.3.8.1.2 for the last equality. Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2).

    Item 5: Interaction With the Empty Set II
    We have

    \begin{align*} D_{X}(D_{X}(U)) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[[U,\text{Ø}]_{X},\text{Ø}]_{X}\\ & = [U^{\textsf{c}},\text{Ø}]_{X}\\ & = (U^{\textsf{c}})^{\textsf{c}}\\ & = U, \end{align*}

    where we have used:

    1. 1.

      Item 3 for the second and third equalities.

    2. 2.

      Item 3 of Proposition 4.3.11.1.2 for the fourth equality.

    Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Chapter 11: Categories, Item 4 of Proposition 11.2.7.1.2), and thus we have

    \[ [[-,\text{Ø}]_{X},\text{Ø}]_{X}\cong \operatorname {\mathrm{id}}_{\mathcal{P}(X)} \]

    This finishes the proof.

    Item 6: Interaction With the Empty Set III
    Since $D_{X}=(-)^{\textsf{c}}$, this is essentially a repetition of the corresponding results for $(-)^{\textsf{c}}$, namely Item 5, Item 6, and Item 7 of Proposition 4.3.11.1.2.

    Item 7: Interaction With Unions of Families of Subsets I
    By Item 3 of Proposition 4.4.7.1.3, we have

    \begin{align*} [\mathcal{U},\text{Ø}]_{\mathcal{P}(X)} & = \mathcal{U}^{\textsf{c}},\\ [U,\text{Ø}]_{X} & = U^{\textsf{c}}. \end{align*}

    With this, the counterexample given in the proof of Item 10 of Proposition 4.3.6.1.2 then applies.

    Item 8: Interaction With Unions of Families of Subsets II
    We have

    \begin{align*} \left[\bigcup _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcup _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcap _{U\in \mathcal{U}}(U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in \mathcal{U}}[U,V]_{X},\end{align*}

    where we have used:

    1. 1.

      Item 11 of Proposition 4.3.6.1.2 for the second equality.

    2. 2.

      Item 6 of Proposition 4.3.7.1.2 for the third equality.

    This finishes the proof.

    Item 9: Interaction With Unions of Families of Subsets III
    We have

    \begin{align*} \bigcup _{V\in \mathcal{V}}[U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}}(U^{\textsf{c}}\cup V)\\ & = U^{\textsf{c}}\cup \left(\bigcup _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcup _{V\in \mathcal{V}}V\right]_{X}. \end{align*}

    where we have used Item 6. This finishes the proof.

    Item 10: Interaction With Intersections of Families of Subsets I
    Let $X=\left\{ 0,1\right\} $, let $\mathcal{U}=\left\{ \left\{ 0,1\right\} \right\} $, and let $\mathcal{V}=\left\{ \left\{ 0\right\} ,\left\{ 0,1\right\} \right\} $. We have

    \begin{align*} \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W & = \bigcap _{W\in \mathcal{P}(X)}W\\ & = \left\{ 0,1\right\} , \end{align*}

    whereas

    \begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X} & = [\left\{ 0,1\right\} ,\left\{ 0\right\} ]\\ & = \left\{ 0\right\} , \end{align*}

    Thus we have

    \[ \bigcap _{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}}W=\left\{ 0,1\right\} \neq \left\{ 0\right\} =\left[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \]

    This finishes the proof.

    Item 11: Interaction With Intersections of Families of Subsets II
    We have

    \begin{align*} \left[\bigcap _{U\in \mathcal{U}}U,V\right]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left(\bigcap _{U\in \mathcal{U}}U\right)^{\textsf{c}}\cup V\\ & = \left(\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}\right)\cup V\\ & = \bigcup _{U\in \mathcal{U}}(U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{U\in \mathcal{U}}[U,V]_{X},\end{align*}

    where we have used:

    1. 1.

      Item 12 of Proposition 4.3.6.1.2 for the second equality.

    2. 2.

      Item 6 of Proposition 4.3.7.1.2 for the third equality.

    This finishes the proof.

    Item 12: Interaction With Intersections of Families of Subsets III
    We have

    \begin{align*} \bigcap _{V\in \mathcal{V}}[U,V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{V\in \mathcal{V}}(U^{\textsf{c}}\cup V)\\ & = U^{\textsf{c}}\cup \left(\bigcap _{V\in \mathcal{V}}V\right)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[U,\bigcap _{V\in \mathcal{V}}V\right]_{X}. \end{align*}

    where we have used Item 6. This finishes the proof.

    Item 13: Interaction With Binary Unions
    We have

    \begin{align*} [U\cap V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\cap V)^{\textsf{c}}\cup W\\ & = (U^{\textsf{c}}\cup V^{\textsf{c}})\cup W\\ & = (U^{\textsf{c}}\cup V^{\textsf{c}})\cup (W\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup (V^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [V,W]_{X}, \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.3.11.1.2 for the second equality.

    2. 2.

      Item 8 of Proposition 4.3.8.1.2 for the third equality.

    3. 3.

      Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the fourth equality.

    For the second equality in the statement, we have

    \begin{align*} [U,V\cap W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\cap W)\\ & = (U^{\textsf{c}}\cup V)\cap (U^{\textsf{c}}\cap W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\cap [U,W]_{X}, \end{align*}

    where we have used Item 6 of Proposition 4.3.8.1.2 for the second equality.

    Item 14: Interaction With Binary Intersections
    We have

    \begin{align*} [U\cup V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\cup V)^{\textsf{c}}\cup W\\ & = (U^{\textsf{c}}\cap V^{\textsf{c}})\cup W\\ & = (U^{\textsf{c}}\cup W)\cap (V^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cap [V,W]_{X}, \end{align*}

    where we have used:

    1. 1.

      Item 2 of Proposition 4.3.11.1.2 for the second equality.

    2. 2.

      Item 6 of Proposition 4.3.8.1.2 for the third equality.

    Now, for the second equality in the statement, we have

    \begin{align*} [U,V\cup W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup U^{\textsf{c}})\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup V)\cup (U^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\cup [U,W]_{X}, \end{align*}

    where we have used:

    1. 1.

      Item 8 of Proposition 4.3.8.1.2 for the second equality.

    2. 2.

      Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the third equality.

    This finishes the proof.

    Item 15: Interaction With Differences
    We have

    \begin{align*} [U\setminus V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\setminus V)^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus (U\setminus V))\cup W\\ & = ((X\cap V)\cup (X\setminus U))\cup W\\ & = (V\cup (X\setminus U))\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\cup W\\ & = (V\cup (U^{\textsf{c}}\cup U^{\textsf{c}}))\cup W\\ & = (U^{\textsf{c}}\cup W)\cup (U^{\textsf{c}}\cup V)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [U,V]_{X}, \end{align*}

    where we have used:

    1. 1.

      Item 10 of Proposition 4.3.10.1.2 for the third equality.

    2. 2.

      Item 4 of Proposition 4.3.9.1.2 for the fourth equality.

    3. 3.

      Item 8 of Proposition 4.3.8.1.2 for the sixth equality.

    4. 4.

      Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.

    We also have

    \begin{align*} [U\setminus V,W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U\setminus V)^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(X\setminus (U\setminus V))\cup W\\ & = ((X\cap V)\cup (X\setminus U))\cup W\\ & = (V\cup (X\setminus U))\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\cup W\\ & = (V\cup U^{\textsf{c}})\cup (W\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup (V\cup W)\\ & = (U^{\textsf{c}}\cup W)\cup ((V^{\textsf{c}})^{\textsf{c}}\cup W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,W]_{X}\cup [V^{\textsf{c}},W]_{X}, \end{align*}

    where we have used:

    1. 1.

      Item 10 of Proposition 4.3.10.1.2 for the third equality.

    2. 2.

      Item 4 of Proposition 4.3.9.1.2 for the fourth equality.

    3. 3.

      Item 8 of Proposition 4.3.8.1.2 for the sixth equality.

    4. 4.

      Several applications of Item 2 and Item 4 of Proposition 4.3.8.1.2 and for the seventh equality.

    5. 5.

      Item 3 of Proposition 4.3.11.1.2 for the eighth equality.

    Now, for the second equality in the statement, we have

    \begin{align*} [U,V\setminus W]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup (V\setminus W)\\ & = (V\setminus W)\cup U^{\textsf{c}}\\ & = (V\cup U^{\textsf{c}})\setminus (W\setminus U^{\textsf{c}})\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(V\cup U^{\textsf{c}})\setminus (W\setminus (X\setminus U))\\ & = (V\cup U^{\textsf{c}})\setminus ((W\cap U)\cup (W\setminus X))\\ & = (V\cup U^{\textsf{c}})\setminus ((W\cap U)\cup \text{Ø})\\ & = (V\cup U^{\textsf{c}})\setminus (W\cap U)\\ & = (V\cup U^{\textsf{c}})\setminus (U\cap W)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[U,V]_{X}\setminus (U\cap W) \end{align*}

    where we have used:

    1. 1.

      Item 4 of Proposition 4.3.8.1.2 for the second equality.

    2. 2.

      Item 4 of Proposition 4.3.10.1.2 for the third equality.

    3. 3.

      Item 10 of Proposition 4.3.10.1.2 for the fifth equality.

  • 4.

    Item 13 of Proposition 4.3.10.1.2 for the sixth equality.

  • 5.

    Item 3 of Proposition 4.3.8.1.2 for the seventh equality.

  • 6.

    Item 5 of Proposition 4.3.9.1.2 for the eighth equality.

  • This finishes the proof.

    Item 16: Interaction With Complements
    We have

    \begin{align*} [U^{\textsf{c}},V]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(U^{\textsf{c}})^{\textsf{c}}\cup V,\\ & = U\cup V, \end{align*}

    where we have used Item 3 of Proposition 4.3.11.1.2. We also have

    \begin{align*} [U,V^{\textsf{c}}]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V^{\textsf{c}}\\ & = U\cap V\\ \end{align*}

    where we have used Item 2 of Proposition 4.3.11.1.2. Finally, we have

    \begin{align*} [U,V]^{\textsf{c}}_{X} & = ((U\setminus V)^{\textsf{c}})^{\textsf{c}}\\ & = U\setminus V, \end{align*}

    where we have used Item 2 of Proposition 4.3.11.1.2.

    Item 17: Interaction With Characteristic Functions
    We have

    \begin{align*} \chi _{[U,V]_{\mathcal{P}(X)}}(x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{U^{\textsf{c}}\cup V}(x)\\ & = \operatorname*{\operatorname {\mathrm{max}}}(\chi _{U^{\textsf{c}}},\chi _{V})\\ & = \operatorname*{\operatorname {\mathrm{max}}}(1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}), \end{align*}

    where we have used:

    1. 1.

      Item 10 of Proposition 4.3.8.1.2 for the second equality.

    2. 2.

      Item 4 of Proposition 4.3.11.1.2 for the third equality.

    This finishes the proof.

    Item 18: Interaction With Direct Images
    This is a repetition of Item 10 of Proposition 4.6.1.1.5 and is proved there.

    Item 19: Interaction With Inverse Images
    This is a repetition of Item 10 of Proposition 4.6.2.1.3 and is proved there.

    Item 20: Interaction With Codirect Images
    This is a repetition of Item 9 of Proposition 4.6.3.1.7 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: