The characteristic relation
\[ \chi _{X}\webleft (-_{1},-_{2}\webright )\colon X\times X\to \{ \mathsf{t},\mathsf{f}\} \]
on $X$ of Chapter 4: Constructions With Sets, Definition 4.5.3.1.1, defined by
\[ \chi _{X}\webleft (x,y\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]
for each $x,y\in X$, is another example of a relation.
Item 1: End Formula for the Set of Inclusions of Relations
Unwinding the expression inside the end on the right hand side, we have
\[ \int _{a\in A}\int _{b\in B}\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{b}_{a},S^{b}_{a}\webright )\cong \begin{cases} \mathrm{pt}& \text{if, for each $a\in A$ and each $b\in B$,}\\ & \text{we have $\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{b}_{a},S^{b}_{a}\webright )\cong \mathrm{pt}$}\\ \text{Ø}& \text{otherwise.}\end{cases} \]
Since we have $\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{b}_{a},S^{b}_{a}\webright )=\left\{ \mathsf{true}\right\} \cong \mathrm{pt}$ exactly when $R^{b}_{a}=\mathsf{false}$ or $R^{b}_{a}=S^{b}_{a}=\mathsf{true}$, we get
\[ \int _{a\in A}\int _{b\in B}\operatorname {\mathrm{Hom}}_{\{ \mathsf{t},\mathsf{f}\} }\webleft (R^{b}_{a},S^{b}_{a}\webright )\cong \begin{cases} \mathrm{pt}& \text{if, for each $a\in A$ and each $b\in B$,}\\ & \text{if $a\sim _{R}b$, then $a\sim _{S}b$,}\\ \text{Ø}& \text{otherwise.}\end{cases} \]
On the left hand-side, we have
\[ \operatorname {\mathrm{Hom}}_{\mathbf{Rel}\webleft (A,B\webright )}\webleft (R,S\webright )\cong \begin{cases} \mathrm{pt}& \text{if $R\subset S$,}\\ \text{Ø}& \text{otherwise.}\end{cases} \]
Since $\webleft (a\sim _{R}b\implies a\sim _{S}b\webright )$ iff $R\subset S$, the two sets above are isomorphic. This finishes the proof.