8.2.1 Elementary Examples of Relations

    The trivial relation on $A$ and $B$ is the relation $\mathord {\sim }_{\mathrm{triv}}$ defined equivalently as follows:

    1. 1.

      As a subset of $A\times B$, we have

      \[ \mathord {\sim }_{\mathrm{triv}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\times B. \]
    2. 2.

      As a function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $, the relation $\mathord {\sim }_{\mathrm{triv}}$ is the constant function

      \[ \Delta _{\mathsf{true}}\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} \]

      from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $ taking the value $\mathsf{true}$.

    3. 3.

      As a function from $A$ to $\mathcal{P}(B)$, the relation $\mathord {\sim }_{\mathrm{triv}}$ is the function

      \[ \Delta _{\mathsf{true}}\colon A\to \mathcal{P}(B) \]

      defined by

      \[ \Delta _{\mathsf{true}}(a)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B \]

      for each $a\in A$.

    4. 4.

      Lastly, it is the unique relation $R$ on $A$ and $B$ such that we have $a\sim _{R}b$ for each $a\in A$ and each $b\in B$.

    The cotrivial relation on $A$ and $B$ is the relation $\mathord {\sim }_{\mathrm{cotriv}}$ defined equivalently as follows:

    1. 1.

      As a subset of $A\times B$, we have

      \[ \mathord {\sim }_{\mathrm{cotriv}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}. \]
    2. 2.

      As a function from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $, the relation $\mathord {\sim }_{\mathrm{cotriv}}$ is the constant function

      \[ \Delta _{\mathsf{false}}\colon A\times B\to \{ \mathsf{true},\mathsf{false}\} \]

      from $A\times B$ to $\{ \mathsf{true},\mathsf{false}\} $ taking the value $\mathsf{false}$.

    3. 3.

      As a function from $A$ to $\mathcal{P}(B)$, the relation $\mathord {\sim }_{\mathrm{cotriv}}$ is the function

      \[ \Delta _{\mathsf{false}}\colon A\to \mathcal{P}(B) \]

      defined by

      \[ \Delta _{\mathsf{false}}(a)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø} \]

      for each $a\in A$.

  • 4.

    Lastly, it is the unique relation $R$ on $A$ and $B$ such that we have $a\nsim _{R}b$ for each $a\in A$ and each $b\in B$.

  • The characteristic relation $\chi _{X}$ on $X$ of Chapter 4: Constructions With Sets, Definition 4.5.3.1.1:

    1. 1.

      As a subset of $X\times X$, we have

      \begin{align*} \mathord {\sim }_{\chi _{X}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Delta _{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (x,x)\in X\times X\right\} .\end{align*}
    2. 2.

      As a function from $X\times X$ to $\{ \mathsf{true},\mathsf{false}\} $, we have

      \[ \chi _{X}(x,y) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $x=y$,}\\ \mathsf{false}& \text{if $x\neq y$} \end{cases} \]

      for each $x,y\in X$.

    3. 3.

      As a function from $X$ to $\mathcal{P}(X)$, we have

      \[ \chi _{X}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ x\right\} \]

      for each $x\in X$.

    The antidiagonal relation on $X$ is the relation $\nabla _{X}$ defined equivalently as follows:

    1. 1.

      As a subset of $X\times X$, we have

      \begin{align*} \mathord {\sim }_{\nabla _{X}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\nabla _{X}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \Delta _{X}\\ & = \left\{ (x,y)\in X\times X\ |\ x\neq y\right\} .\end{align*}
    2. 2.

      As a function from $X\times X$ to $\{ \mathsf{true},\mathsf{false}\} $, we have

      \[ \nabla _{X}(x,y) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $a\neq b$,}\\ \mathsf{false}& \text{if $a=b$} \end{cases} \]

      for each $x,y\in X$.

    3. 3.

      As a function from $X$ to $\mathcal{P}(X)$, we have

      \[ \nabla _{X}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \left\{ x\right\} \]

      for each $x\in X$.

    Square roots are examples of relations:

    1. 1.

      Square Roots in $\mathbb {R}$. The assignment $x\mapsto \sqrt{x}$ defines a relation

      \[ \sqrt{-}\colon \mathbb {R}\to \mathcal{P}(\mathbb {R}) \]

      from $\mathbb {R}$ to itself, being explicitly given by

      \[ \sqrt{x}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} 0 & \text{if $x=0$,}\\ \left\{ -\sqrt{\left\lvert x\right\rvert },\sqrt{\left\lvert x\right\rvert }\right\} & \text{if $x\neq 0$.} \end{cases} \]
    2. 2.

      Square Roots in $\mathbb {Q}$. Square roots in $\mathbb {Q}$ are similar to square roots in $\mathbb {R}$, though now additionally it may also occur that $\sqrt{-}\colon \mathbb {Q}\to \mathcal{P}(\mathbb {Q})$ sends a rational number $x$ (e.g. $2$) to the empty set (since $\sqrt{2}\not\in \mathbb {Q}$).

    The complex logarithm defines a relation

    \[ \log \colon \mathbb {C}\to \mathcal{P}(\mathbb {C}) \]

    from $\mathbb {C}$ to itself, where we have

    \[ \log (a+bi)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ \log (\sqrt{a^{2}+b^{2}})+i\arg (a+bi)+(2\pi i)k\ \middle |\ k\in \mathbb {Z}\right\} \]

    for each $a+bi\in \mathbb {C}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: