-
1.
The definition of relations (Section 8.1.1).
-
2.
How relations may be viewed as decategorification of profunctors (Section 8.1.2).
-
3.
The various kinds of categories that relations form, namely:
-
(a)
A category (Section 8.3.2).
-
(b)
A monoidal category (Section 8.3.3).
-
(c)
A $2$-category (Section 8.3.4).
-
(d)
A double category (Section 8.3.5).
-
(a)
-
4.
The various categorical properties of the $2$-category of relations, including:
-
(a)
The self-duality of $\mathsf{Rel}$ and $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.1.1.1).
-
(b)
Identifications of equivalences and isomorphisms in $\boldsymbol {\mathsf{Rel}}$ with bijections (Proposition 8.4.2.1.1).
-
(c)
Identifications of adjunctions in $\boldsymbol {\mathsf{Rel}}$ with functions (Proposition 8.4.3.1.1).
-
(d)
Identifications of monads in $\boldsymbol {\mathsf{Rel}}$ with preorders (Proposition 8.4.4.1.1).
-
(e)
Identifications of comonads in $\boldsymbol {\mathsf{Rel}}$ with subsets (Proposition 8.4.5.1.1).
-
(f)
A description of the monoids and comonoids in $\boldsymbol {\mathsf{Rel}}$ with respect to the Cartesian product (Remark 8.4.6.1.1).
-
(g)
Characterisations of monomorphisms in $\mathsf{Rel}$ (Proposition 8.4.7.1.1).
-
(h)
Characterisations of $2$-categorical notions of monomorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.8.1.1).
-
(i)
Characterisations of epimorphisms in $\mathsf{Rel}$ (Proposition 8.4.9.1.1).
-
(j)
Characterisations of $2$-categorical notions of epimorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.10.1.1).
-
(k)
The partial co/completeness of $\mathsf{Rel}$ (Proposition 8.4.11.1.1).
-
(l)
The existence or non-existence of Kan extensions and Kan lifts in $\mathsf{Rel}$ (Remark 8.4.12.1.1).
-
(m)
The closedness of $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.13.1.1).
-
(n)
The identification of $\boldsymbol {\mathsf{Rel}}$ with the category of free algebras of the powerset monad on $\mathsf{Sets}$ (Proposition 8.4.14.1.1).
-
5.
The adjoint pairs
\begin{align*} R_{!} \dashv R_{-1} & \colon \mathcal{P}\webleft (A\webright ) \rightleftarrows \mathcal{P}\webleft (B\webright ),\\ R^{-1} \dashv R_{*} & \colon \mathcal{P}\webleft (B\webright ) \rightleftarrows \mathcal{P}\webleft (A\webright ) \end{align*}of functors (morphisms of posets) between $\mathcal{P}\webleft (A\webright )$ and $\mathcal{P}\webleft (B\webright )$ induced by a relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, as well as the properties of $R_{!}$, $R_{-1}$, $R^{-1}$, and $R_{*}$ (Section 8.5).
Of particular note are the following points:
-
(a)
These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_{!}\dashv f^{-1}\dashv f_{*}$ induced by a function $f\colon A\to B$ studied in Chapter 4: Constructions With Sets, Section 4.6.
-
(b)
We have $R_{-1}=R^{-1}$ iff $R$ is total and functional (Item 8 of Proposition 8.5.2.1.3).
-
(c)
As a consequence of the previous item, when $R$ comes from a function $f$, the pair of adjunctions
\[ R_{!}\dashv R_{-1}=R^{-1}\dashv R_{*} \]reduces to the triple adjunction
\[ f_{!}\dashv f^{-1}\dashv f_{*} \] -
(d)
The pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (
,
).
-
(a)
-
6.
A description of two notions of “skew composition” on $\mathbf{Rel}\webleft (A,B\webright )$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ appearing in the definition of a relative monad (Section 8.6 and Section 8.7).
-
1.
Define apartness composition
-
2.
Examples:
-
3.
Revise Section 8.3
-
4.
Replicate Section 8.3 for apartness composition
-
5.
Revise Section 8.4
-
(a)
Add modules over monads in $\boldsymbol {\mathsf{Rel}}$
-
(b)
internal relations,
-
(c)
Co/limits in $\boldsymbol {\mathsf{Rel}}$.
-
(d)
Codensity monad $\operatorname {\mathrm{Ran}}_{J}\webleft (J\webright )$ of a relation (What about $\operatorname {\mathrm{Rift}}_{J}\webleft (J\webright )$?)
-
(i)
Density comonad $\operatorname {\mathrm{Lan}}_{J}\webleft (J\webright )$ of a relation when it exists (what about $\operatorname {\mathrm{Lift}}_{J}\webleft (J\webright )$?)
-
(i)
-
(e)
Fibrations in $\boldsymbol {\mathsf{Rel}}$, like discrete fibrations and Street fibrations
-
(a)
-
6.
Replicate Section 8.4 for apartness composition
-
7.
Revise Section 8.5
-
8.
Add subsection “A Six Functor Formalism for Sets, Part 2”, now with relations, building upon Section 8.5.
-
9.
Replicate Section 8.5 for apartness composition
-
10.
Revise sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$
-
11.
Replicate the sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$ for apartness composition.
-
12.
Explore relative co/monads in $\boldsymbol {\mathsf{Rel}}$, defined to be co/monoids in $\mathbf{Rel}\webleft (A,B\webright )$ with its left/right skew monoidal structures of Chapter 8: Relations, Section 8.6 and Section 8.7
-
13.
Consider adding the sections
-
•
The Monoidal Bicategory of Relations
-
•
The Monoidal Double Category of Relations
to Chapter 8: Relations .
-
•
-
14.
functional total relations defined with “satisfying the following equivalent conditions:”
8 Relations
This chapter contains some material about relations. Notably, we discuss and explore:
This chapter is under revision. TODO: