8 Relations

    This chapter contains some material about relations. Notably, we discuss and explore:

    1. 1.

      The definition of relations (Section 8.1.1).

    2. 2.

      How relations may be viewed as decategorification of profunctors (Section 8.1.2).

    3. 3.

      The various kinds of categories that relations form, namely:

      1. (a)

        A category (Section 8.3.2).

  • (b)

    A monoidal category (Section 8.3.3).

  • (c)

    A $2$-category (Section 8.3.4).

  • (d)

    A double category (Section 8.3.5).

  • 4.

    The various categorical properties of the $2$-category of relations, including:

    1. (a)

      The self-duality of $\mathsf{Rel}$ and $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.1.1.1).

    2. (b)

      Identifications of equivalences and isomorphisms in $\boldsymbol {\mathsf{Rel}}$ with bijections (Proposition 8.4.2.1.1).

    3. (c)

      Identifications of adjunctions in $\boldsymbol {\mathsf{Rel}}$ with functions (Proposition 8.4.3.1.1).

    4. (d)

      Identifications of monads in $\boldsymbol {\mathsf{Rel}}$ with preorders (Proposition 8.4.4.1.1).

    5. (e)

      Identifications of comonads in $\boldsymbol {\mathsf{Rel}}$ with subsets (Proposition 8.4.5.1.1).

    6. (f)

      A description of the monoids and comonoids in $\boldsymbol {\mathsf{Rel}}$ with respect to the Cartesian product (Remark 8.4.6.1.1).

    7. (g)

      Characterisations of monomorphisms in $\mathsf{Rel}$ (Proposition 8.4.7.1.1).

    8. (h)

      Characterisations of $2$-categorical notions of monomorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.8.1.1).

    9. (i)

      Characterisations of epimorphisms in $\mathsf{Rel}$ (Proposition 8.4.9.1.1).

    10. (j)

      Characterisations of $2$-categorical notions of epimorphisms in $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.10.1.1).

    11. (k)

      The partial co/completeness of $\mathsf{Rel}$ (Proposition 8.4.11.1.1).

    12. (l)

      The existence or non-existence of Kan extensions and Kan lifts in $\mathsf{Rel}$ (Remark 8.4.12.1.1).

    13. (m)

      The closedness of $\boldsymbol {\mathsf{Rel}}$ (Proposition 8.4.13.1.1).

    14. (n)

      The identification of $\boldsymbol {\mathsf{Rel}}$ with the category of free algebras of the powerset monad on $\mathsf{Sets}$ (Proposition 8.4.14.1.1).

  • 5.

    The adjoint pairs

    \begin{align*} R_{!} \dashv R_{-1} & \colon \mathcal{P}\webleft (A\webright ) \rightleftarrows \mathcal{P}\webleft (B\webright ),\\ R^{-1} \dashv R_{*} & \colon \mathcal{P}\webleft (B\webright ) \rightleftarrows \mathcal{P}\webleft (A\webright ) \end{align*}

    of functors (morphisms of posets) between $\mathcal{P}\webleft (A\webright )$ and $\mathcal{P}\webleft (B\webright )$ induced by a relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$, as well as the properties of $R_{!}$, $R_{-1}$, $R^{-1}$, and $R_{*}$ (Section 8.5).

    Of particular note are the following points:

    1. (a)

      These two pairs of adjoint functors are the counterpart for relations of the adjoint triple $f_{!}\dashv f^{-1}\dashv f_{*}$ induced by a function $f\colon A\to B$ studied in Chapter 4: Constructions With Sets, Section 4.6.

    2. (b)

      We have $R_{-1}=R^{-1}$ iff $R$ is total and functional (Item 8 of Proposition 8.5.2.1.3).

    3. (c)

      As a consequence of the previous item, when $R$ comes from a function $f$, the pair of adjunctions

      \[ R_{!}\dashv R_{-1}=R^{-1}\dashv R_{*} \]

      reduces to the triple adjunction

      \[ f_{!}\dashv f^{-1}\dashv f_{*} \]

      from Chapter 4: Constructions With Sets, Section 4.6.

    4. (d)

      The pairs $R_{!}\dashv R_{-1}$ and $R^{-1}\dashv R_{*}$ turn out to be rather important later on, as they appear in the definition and study of continuous, open, and closed relations between topological spaces (Unresolved reference, Unresolved reference).

  • 6.

    A description of two notions of “skew composition” on $\mathbf{Rel}\webleft (A,B\webright )$, giving rise to left and right skew monoidal structures analogous to the left skew monoidal structure on $\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )$ appearing in the definition of a relative monad (Section 8.6 and Section 8.7).

  • This chapter is under revision. TODO:

    1. 1.

      Define apartness composition

    2. 2.

      Examples:

      1. (a)

        partial functions

      2. (b)

        hyperring examples (tropical, Berkovich, etc.)

    3. 3.

      Revise Section 8.3

    4. 4.

      Replicate Section 8.3 for apartness composition

    5. 5.

      Revise Section 8.4

      1. (a)

        Add modules over monads in $\boldsymbol {\mathsf{Rel}}$

      2. (b)

        internal relations,

      3. (c)

        Co/limits in $\boldsymbol {\mathsf{Rel}}$.

      4. (d)

        Codensity monad $\operatorname {\mathrm{Ran}}_{J}\webleft (J\webright )$ of a relation (What about $\operatorname {\mathrm{Rift}}_{J}\webleft (J\webright )$?)

        1. (i)

          Density comonad $\operatorname {\mathrm{Lan}}_{J}\webleft (J\webright )$ of a relation when it exists (what about $\operatorname {\mathrm{Lift}}_{J}\webleft (J\webright )$?)

      5. (e)

        Fibrations in $\boldsymbol {\mathsf{Rel}}$, like discrete fibrations and Street fibrations

    6. 6.

      Replicate Section 8.4 for apartness composition

    7. 7.

      Revise Section 8.5

    8. 8.

      Add subsection “A Six Functor Formalism for Sets, Part 2”, now with relations, building upon Section 8.5.

    9. 9.

      Replicate Section 8.5 for apartness composition

    10. 10.

      Revise sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$

    11. 11.

      Replicate the sections on skew monoidal structures on $\mathbf{Rel}\webleft (A,B\webright )$ for apartness composition.

    12. 12.

      Explore relative co/monads in $\boldsymbol {\mathsf{Rel}}$, defined to be co/monoids in $\mathbf{Rel}\webleft (A,B\webright )$ with its left/right skew monoidal structures of Chapter 8: Relations, Section 8.6 and Section 8.7

    13. 13.

      Consider adding the sections

      • The Monoidal Bicategory of Relations

      • The Monoidal Double Category of Relations

      to Chapter 8: Relations .

    14. 14.

      functional total relations defined with “satisfying the following equivalent conditions:”


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: