8.5 Properties of the 2-Category of Relations
-
Subsection 8.5.1: Self-Duality
- Proposition 8.5.1.1.1: Self-Duality for the (2-)Category of Relations
- Subsection 8.5.2: Isomorphisms and Equivalences
-
Subsection 8.5.3: Internal Adjunctions
- Proposition 8.5.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}$
- Subsection 8.5.4: Internal Monads
- Subsection 8.5.5: Internal Comonads
-
Subsection 8.5.6: Modules Over Internal Monads
- Proposition 8.5.6.1.1: Modules Over Internal Monads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.7: Comodules Over Internal Comonads
- Proposition 8.5.7.1.1: Comodules Over Internal Comonads in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.8: Eilenberg–Moore and Kleisli Objects
- Proposition 8.5.8.1.1: Eilenberg–Moore and Kleisli Objects in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.9: Co/Monoids
- Remark 8.5.9.1.1: Co/Monoids in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.10: Monomorphisms and 2-Categorical Monomorphisms
- Explanation 8.5.10.1.1: Monomorphisms in $\mathsf{Rel}$
- Proposition 8.5.10.1.2: Characterisations of Monomorphisms in $\mathsf{Rel}$ I
- Proposition 8.5.10.1.3: Characterisations of Monomorphisms in $\mathsf{Rel}$ II
- Corollary 8.5.10.1.4: Characterisations of Monomorphisms in $\mathsf{Rel}$ III
- Corollary 8.5.10.1.5: Characterisations of Monomorphisms in $\mathsf{Rel}$ V
- Warning 8.5.10.1.6: Natural Conditions That Fail To Characterise Monomorphisms in $\mathsf{Rel}$
- Remark 8.5.10.1.7: Monomorphisms in $\mathsf{Rel}$ Give Rise to Antichains
- Proposition 8.5.10.1.8: Characterisations of 2-Categorical Monomorphisms in $\boldsymbol {\mathsf{Rel}}$ I
- Proposition 8.5.10.1.9: Characterisations of 2-Categorical Monomorphisms in $\boldsymbol {\mathsf{Rel}}$ II
-
Subsection 8.5.11: Epimorphisms and 2-Categorical Epimorphisms
- Explanation 8.5.11.1.1: Epimorphisms in $\mathsf{Rel}$
- Proposition 8.5.11.1.2: Characterisations of Epimorphisms in $\mathsf{Rel}$ I
- Proposition 8.5.11.1.3: Characterisations of Epimorphisms in $\mathsf{Rel}$ II
- Corollary 8.5.11.1.4: Characterisations of Epimorphisms in $\mathsf{Rel}$ III
- Corollary 8.5.11.1.5: Characterisations of Epimorphisms in $\mathsf{Rel}$ IV
- Corollary 8.5.11.1.6: Characterisations of Epimorphisms in $\mathsf{Rel}$ V
- Warning 8.5.11.1.7: Natural Conditions That Fail To Characterise Epimorphisms in $\mathsf{Rel}$
- Remark 8.5.11.1.8: Epimorphisms in $\mathsf{Rel}$ Give Rise to Antichains
- Proposition 8.5.11.1.9: Characterisations of 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$ I
- Proposition 8.5.11.1.10: Characterisations of 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$ II
-
Subsection 8.5.12: Retractions
- Proposition 8.5.12.1.1: Retractions in $\mathsf{Rel}$
-
Subsection 8.5.13: Sections
- Proposition 8.5.13.1.1: Sections in $\mathsf{Rel}$
-
Subsection 8.5.14: Co/Limits
- Proposition 8.5.14.1.1: Co/Limits in $\mathsf{Rel}$
-
Subsection 8.5.15: Internal Left Kan Extensions
- Proposition 8.5.15.1.1: Internal Left Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.15.1.2: Internal Left Kan Extensions Along Functions
- Remark 8.5.15.1.3: Illustrating the Failure of Internal Left Kan Extensions in $\boldsymbol {\mathsf{Rel}}$ to Exist
- Question 8.5.15.1.4: Existence of Specific Internal Left Kan Extensions of Relations
-
Subsection 8.5.16: Internal Left Kan Lifts
- Proposition 8.5.16.1.1: Internal Left Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.16.1.2: Internal Left Kan Lifts Along Functions
- Question 8.5.16.1.3: Existence of Specific Internal Left Kan Lifts of Relations
-
Subsection 8.5.17: Internal Right Kan Extensions
- Motivation 8.5.17.1.1: Setting for Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Proposition 8.5.17.1.2: Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.17.1.3: Examples of Internal Right Kan Extensions of Relations
- Proposition 8.5.17.1.4: Properties of Internal Right Kan Extensions in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.18: Internal Right Kan Lifts
- Motivation 8.5.18.1.1: Setting for Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Proposition 8.5.18.1.2: Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
- Example 8.5.18.1.3: Examples of Internal Right Kan Extensions of Relations
- Proposition 8.5.18.1.4: Properties of Internal Right Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.19: Closedness
- Proposition 8.5.19.1.1: Closedness of $\boldsymbol {\mathsf{Rel}}$
-
Subsection 8.5.20: $\mathsf{Rel}$ as a Category of Free Algebras
- Proposition 8.5.20.1.1: $\mathsf{Rel}$ as a Category of Free Algebras