8.4 Properties of the $2$-Category of Relations

  • Subsection 8.4.1: Self-Duality
    • Proposition 8.4.1.1.1: Self-Duality for the (2-)Category of Relations
  • Subsection 8.4.2: Isomorphisms and Equivalences
    • Proposition 8.4.2.1.1: Isomorphisms and Equivalences in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.3: Internal Adjunctions
    • Proposition 8.4.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.4: Internal Monads
    • Proposition 8.4.4.1.1: Monads in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.5: Internal Comonads
    • Proposition 8.4.5.1.1: Comonads in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.6: Co/Monoids
    • Remark 8.4.6.1.1: Co/Monoids in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.7: Monomorphisms
    • Proposition 8.4.7.1.1: Characterisations of Monomorphisms in $\mathsf{Rel}$
  • Subsection 8.4.8: 2-Categorical Monomorphisms
    • Proposition 8.4.8.1.1: 2-Categorical Monomorphisms in $\boldsymbol {\mathsf{Rel}}$
    • Question 8.4.8.1.2: Better Characterisations of Representably Full Morphisms in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.9: Epimorphisms
    • Proposition 8.4.9.1.1: Characterisations of Epimorphisms in $\mathsf{Rel}$
  • Subsection 8.4.10: 2-Categorical Epimorphisms
    • Proposition 8.4.10.1.1: 2-Categorical Epimorphisms in $\boldsymbol {\mathsf{Rel}}$
    • Question 8.4.10.1.2: Better Characterisations of Corepresentably Full Morphisms in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.11: Co/Limits
    • Proposition 8.4.11.1.1: Co/Limits in $\mathsf{Rel}$
  • Subsection 8.4.12: Internal Kan Extensions and Lifts
    • Remark 8.4.12.1.1: Kan Extensions and Kan Lifts in $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.13: Closedness
    • Proposition 8.4.13.1.1: Closedness of $\boldsymbol {\mathsf{Rel}}$
  • Subsection 8.4.14: $\mathsf{Rel}$ as a Category of Free Algebras
    • Proposition 8.4.14.1.1: $\mathsf{Rel}$ as a Category of Free Algebras

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: