Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
-
1.
Non-Existence of All Left Kan Extensions in $\boldsymbol {\mathsf{Rel}}$. Not all relations in $\boldsymbol {\mathsf{Rel}}$ admit left Kan extensions.
-
2.
Characterisation of Relations Admitting Left Kan Extensions Along Them. The following conditions are equivalent:
-
(a)
The left Kan extension
\[ \operatorname {\mathrm{Lan}}_{R}\colon \mathbf{Rel}\webleft (A,X\webright )\to \mathbf{Rel}\webleft (B,X\webright ) \]along $R$ exists.
-
(b)
The relation $R$ admits a left adjoint in $\boldsymbol {\mathsf{Rel}}$.
-
(c)
The relation $R$ is of the form $f^{-1}$ (as in
) for some function $f$.
-
(a)