8.6 Properties of the 2-Category of Relations With Apartness Composition
-
Subsection 8.6.1: Self-Duality
- Proposition 8.6.1.1.1: Self-Duality for the (2-)Category of Relations With Apartness Composition
-
Subsection 8.6.2: Isomorphisms and Equivalences
- Lemma 8.6.2.1.1: Conditions Involving a Relation and Its Converse II
- Remark 8.6.2.1.2: Unwinding Lemma 8.6.2.1.1
- Proposition 8.6.2.1.3: Isomorphisms and Equivalences in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
-
Subsection 8.6.3: Internal Adjunctions
- Proposition 8.6.3.1.1: Adjunctions in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
-
Subsection 8.6.4: Internal Monads
- Proposition 8.6.4.1.1: Internal Monads in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$
- Subsection 8.6.5: Internal Comonads
- Subsection 8.6.6: Modules Over Internal Monads
- Subsection 8.6.7: Comodules Over Internal Comonads
- Subsection 8.6.8: Eilenberg–Moore and Kleisli Objects
- Subsection 8.6.9: Monomorphisms
- Subsection 8.6.10: 2-Categorical Monomorphisms
- Subsection 8.6.11: Epimorphisms
- Subsection 8.6.12: 2-Categorical Epimorphisms
- Subsection 8.6.13: Co/Limits
- Subsection 8.6.14: Internal Left Kan Extensions
- Subsection 8.6.15: Internal Left Kan Lifts
- Subsection 8.6.16: Internal Right Kan Extensions
- Subsection 8.6.17: Internal Right Kan Lifts
- Subsection 8.6.18: Coclosedness