8.6.2 Isomorphisms and Equivalences

Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$, and recall that $R^{\textsf{c}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B\times A\setminus R$.

The conditions below are row-wise equivalent:

Condition

Inclusion

$R^{\textsf{c}}$ is functional

$\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

$R^{\textsf{c}}$ is total

$R\mathbin {\square }R^{\dagger }\subset \nabla _{A}$

$R^{\textsf{c}}$ is injective

$\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

$R^{\textsf{c}}$ is surjective

$R^{\dagger }\mathbin {\square }R\subset \nabla _{B}$

Proof of Lemma 8.6.2.1.1.

This follows from Lemma 8.5.2.1.1 and Item 4 of Proposition 8.1.4.1.3. For instance:

  • Suppose we have $R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$.

  • Taking complements, we obtain $\nabla ^{\textsf{c}}_{B}\subset (R\mathbin {\square }R^{\dagger })^{\textsf{c}}$.

  • Applying Item 4 of Proposition 8.1.4.1.3, this becomes $\Delta _{B}\subset R^{\textsf{c}}\mathbin {\diamond }(R^{\dagger })^{\textsf{c}}$.

  • Then, by Lemma 8.5.2.1.1, this is equivalent to $R^{\textsf{c}}$ being total.

The proof of the other equivalences is similar, and thus omitted.

The statements in Lemma 8.6.2.1.1 unwind to the following:

Inclusion

Quantifier

Condition

$\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

For each $b_{1},b_{2}\in B$

If $b_{1}\neq b_{2}$, then, for each $a\in A$,

we have $a\sim _{R}b_{1}$ or $a\sim _{R}b_{2}$.

$R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$

For each $b_{1},b_{2}\in B$

If, for each $a\in A$,

$a\sim _{R}b_{1}$ or $a\sim _{R}b_{2}$,

then $b_{1}\neq b_{2}$.

$\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

For each $a_{1},a_{2}\in A$

If $a_{1}\neq a_{2}$, then, for each $b\in B$,

we have $a_{1}\sim _{R}b$ or $a_{2}\sim _{R}b$.

$R^{\dagger }\mathbin {\square }R\subset \nabla _{A}$

For each $a_{1},a_{2}\in A$

If, for each $b\in B$,

$a_{1}\sim _{R}b$ or $a_{2}\sim _{R}b$,

then $a_{1}\neq a_{2}$.

Equivalently:

Inclusion

Quantifier

If

Then

$\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

For each $b_{1},b_{2}\in B$

$b_{1}\neq b_{2}$

$R^{-1}(b_{1})\cup R^{-1}(b_{2})=A$

$R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$

For each $b_{1},b_{2}\in B$

$R^{-1}(b_{1})\cup R^{-1}(b_{2})=A$

$b_{1}\neq b_{2}$

$\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

For each $a_{1},a_{2}\in A$

$a_{1}\neq a_{2}$

$R(a_{1})\cup R(a_{2})=B$

$R^{\dagger }\mathbin {\square }R\subset \nabla _{A}$

For each $a_{1},a_{2}\in A$

$R(a_{1})\cup R(a_{2})=B$

$a_{1}\neq a_{2}$

The following conditions are equivalent:

  1. 1.

    The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an equivalence in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$, i.e.:

    • (★)
    • There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ together with isomorphisms
      \begin{align*} R^{-1}\mathbin {\square }R & \cong \nabla _{A},\\ R\mathbin {\square }R^{-1} & \cong \nabla _{B}. \end{align*}
  2. 2.

    The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an isomorphism in $\mathrm{Rel}$, i.e.:

    • (★)
    • There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ such that we have
      \begin{align*} R^{-1}\mathbin {\square }R & = \nabla _{A},\\ R\mathbin {\square }R^{-1} & = \nabla _{B}. \end{align*}
  3. 3.

    There exists a bijection $f\colon B\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }A$ with $R^{\textsf{c}}=f^{-1}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: