8.6.2 Isomorphisms and Equivalences

    Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$, and recall that $R^{\textsf{c}}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B\times A\setminus R$.

    The conditions below are row-wise equivalent:

    Condition

    Inclusion

    $R^{\textsf{c}}$ is functional

    $\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

    $R^{\textsf{c}}$ is total

    $R\mathbin {\square }R^{\dagger }\subset \nabla _{A}$

    $R^{\textsf{c}}$ is injective

    $\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

    $R^{\textsf{c}}$ is surjective

    $R^{\dagger }\mathbin {\square }R\subset \nabla _{B}$

    Proof of Lemma 8.6.2.1.1.

    This follows from Lemma 8.5.2.1.1 and Item 4 of Proposition 8.1.4.1.3. For instance:

    • Suppose we have $R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$.

    • Taking complements, we obtain $\nabla ^{\textsf{c}}_{B}\subset (R\mathbin {\square }R^{\dagger })^{\textsf{c}}$.

    • Applying Item 4 of Proposition 8.1.4.1.3, this becomes $\Delta _{B}\subset R^{\textsf{c}}\mathbin {\diamond }(R^{\dagger })^{\textsf{c}}$.

    • Then, by Lemma 8.5.2.1.1, this is equivalent to $R^{\textsf{c}}$ being total.

    The proof of the other equivalences is similar, and thus omitted.

    The statements in Lemma 8.6.2.1.1 unwind to the following:

    Inclusion

    Quantifier

    Condition

    $\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

    For each $b_{1},b_{2}\in B$

    If $b_{1}\neq b_{2}$, then, for each $a\in A$,

    we have $a\sim _{R}b_{1}$ or $a\sim _{R}b_{2}$.

    $R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$

    For each $b_{1},b_{2}\in B$

    If, for each $a\in A$,

    $a\sim _{R}b_{1}$ or $a\sim _{R}b_{2}$,

    then $b_{1}\neq b_{2}$.

    $\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

    For each $a_{1},a_{2}\in A$

    If $a_{1}\neq a_{2}$, then, for each $b\in B$,

    we have $a_{1}\sim _{R}b$ or $a_{2}\sim _{R}b$.

    $R^{\dagger }\mathbin {\square }R\subset \nabla _{A}$

    For each $a_{1},a_{2}\in A$

    If, for each $b\in B$,

    $a_{1}\sim _{R}b$ or $a_{2}\sim _{R}b$,

    then $a_{1}\neq a_{2}$.

    Equivalently:

    Inclusion

    Quantifier

    If

    Then

    $\nabla _{B} \subset R\mathbin {\square }R^{\dagger }$

    For each $b_{1},b_{2}\in B$

    $b_{1}\neq b_{2}$

    $R^{-1}(b_{1})\cup R^{-1}(b_{2})=A$

    $R\mathbin {\square }R^{\dagger }\subset \nabla _{B}$

    For each $b_{1},b_{2}\in B$

    $R^{-1}(b_{1})\cup R^{-1}(b_{2})=A$

    $b_{1}\neq b_{2}$

    $\nabla _{A} \subset R^{\dagger }\mathbin {\square }R$

    For each $a_{1},a_{2}\in A$

    $a_{1}\neq a_{2}$

    $R(a_{1})\cup R(a_{2})=B$

    $R^{\dagger }\mathbin {\square }R\subset \nabla _{A}$

    For each $a_{1},a_{2}\in A$

    $R(a_{1})\cup R(a_{2})=B$

    $a_{1}\neq a_{2}$

    The following conditions are equivalent:

    1. 1.

      The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an equivalence in $\boldsymbol {\mathsf{Rel}}^{\mathord {\mathbin {\square }}}$, i.e.:

      • (★)
      • There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ together with isomorphisms
        \begin{align*} R^{-1}\mathbin {\square }R & \cong \nabla _{A},\\ R\mathbin {\square }R^{-1} & \cong \nabla _{B}. \end{align*}
    2. 2.

      The relation $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is an isomorphism in $\mathrm{Rel}$, i.e.:

      • (★)
      • There exists a relation $R^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ from $B$ to $A$ such that we have
        \begin{align*} R^{-1}\mathbin {\square }R & = \nabla _{A},\\ R\mathbin {\square }R^{-1} & = \nabla _{B}. \end{align*}
  • 3.

    There exists a bijection $f\colon B\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }A$ with $R^{\textsf{c}}=f^{-1}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: