Let $U$ be a subset of $A$, viewed also as an internal comonad on $A$ via Proposition 8.5.5.1.1.
-
1.
Left Comodules. We have a natural identification
\[ \left\{ \text{Left comodules over $U$}\right\} \cong \left\{ \begin{aligned} & \text{Relations $R\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ such that,}\\ & \text{for each $b\in B$, we have $R(b)\subset U$} \end{aligned} \right\} . \] -
2.
Right Comodules. We have a natural identification
\[ \left\{ \text{Right comodules over $U$}\right\} \cong \left\{ \begin{aligned} & \text{Relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ such that,}\\ & \text{for each $b\in B$, we have $R^{-1}(b)\subset U$}\end{aligned} \right\} . \] -
3.
Bicomodules. We have a natural identification
\[ \left\{ \text{Bicomodules over $U$}\right\} \cong \left\{ \begin{gathered} \text{Quadruples $(B,C,R,S)$ such that:}\\ \begin{aligned} & \text{1. For each $b\in B$, we have $R(b)\subset U$}\\ & \text{2. For each $c\in C$, we have $S^{-1}(c)\subset U$} \end{aligned} \end{gathered} \right\} . \]