Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
-
1.
Representably Faithful Morphisms in $\boldsymbol {\mathsf{Rel}}$. Every morphism of $\boldsymbol {\mathsf{Rel}}$ is a representably faithful morphism.
-
2.
Representably Full Morphisms in $\boldsymbol {\mathsf{Rel}}$. The following conditions are equivalent:
-
(a)
The morphism $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ is a representably full morphism.
-
(b)
For each pair of relations $S,T\colon X\mathrel {\rightrightarrows \kern -9.5pt\mathrlap {|}\kern 6pt}A$, the following condition is satisfied:
- (★) If $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, then $S\subset T$.
-
(c)
The functor
\[ R_{!}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]is full.
-
(d)
For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{!}\webleft (U\webright )\subset R_{!}\webleft (V\webright )$, then $U\subset V$.
-
(e)
The functor
\[ R_{*}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]is full.
-
(f)
For each $U,V\in \mathcal{P}\webleft (A\webright )$, if $R_{*}\webleft (U\webright )\subset R_{*}\webleft (V\webright )$, then $U\subset V$.
-
(a)
-
3.
Representably Fully Faithful Morphisms in $\boldsymbol {\mathsf{Rel}}$. Every representably full morphism in $\boldsymbol {\mathsf{Rel}}$ is a representably fully faithful morphism.