Item 2a$\iff $Item 2b: This is simply a matter of unwinding definitions: The relation $R$ is a representably full morphism in $\boldsymbol {\mathsf{Rel}}$ iff , for each $X\in \operatorname {\mathrm{Obj}}\webleft (\boldsymbol {\mathsf{Rel}}\webright )$, the functor
\[ R_{!}\colon \mathbf{Rel}\webleft (X,A\webright )\to \mathbf{Rel}\webleft (X,B\webright ) \]
is full, i.e. iff the morphism
\[ R_{*|S,T}\colon \operatorname {\mathrm{Hom}}_{\mathbf{Rel}\webleft (X,A\webright )}\webleft (S,T\webright )\to \operatorname {\mathrm{Hom}}_{\mathbf{Rel}\webleft (X,B\webright )}\webleft (R\mathbin {\diamond }S,R\mathbin {\diamond }T\webright ) \]
is surjective for each $S,T\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}\webleft (X,A\webright )\webright )$, i.e. iff , whenever $R\mathbin {\diamond }S\subset R\mathbin {\diamond }T$, we also have $S\subset T$.