Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation. The following conditions are equivalent:
-
1.
The relation $R$ is an epimorphism in $\mathsf{Rel}$.
-
2.
The weak inverse image function
\[ R^{-1}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]associated to $R$ is injective.
-
3.
The strong inverse image function
\[ R_{-1}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]associated to $R$ is injective.