Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation. The following conditions are equivalent:
-
1.
The relation $R$ is an epimorphism in $\mathsf{Rel}$.
-
2.
The weak inverse image function
\[ R^{-1}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]associated to $R$ is injective.
-
3.
The strong inverse image function
\[ R_{-1}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]associated to $R$ is injective.
-
4.
The function $R\colon A\to \mathcal{P}\webleft (B\webright )$ is “surjective on singletons”:
- (★) For each $b\in B$, there exists some $a\in A$ such that $R\webleft (a\webright )=\left\{ b\right\} $.
Moreover, if $R$ is total and an epimorphism, then it satisfies the following equivalent conditions: