Item 2a$\iff $Item 2b: This is simply a matter of unwinding definitions: The relation $R$ is a corepresentably full morphism in $\boldsymbol {\mathsf{Rel}}$ iff , for each $X\in \operatorname {\mathrm{Obj}}\webleft (\boldsymbol {\mathsf{Rel}}\webright )$, the functor
\[ R^{*}\colon \mathbf{Rel}\webleft (B,X\webright )\to \mathbf{Rel}\webleft (A,X\webright ) \]
is full, i.e. iff the morphism
\[ R^{*}_{S,T}\colon \operatorname {\mathrm{Hom}}_{\mathbf{Rel}\webleft (B,X\webright )}\webleft (S,T\webright )\to \operatorname {\mathrm{Hom}}_{\mathbf{Rel}\webleft (A,X\webright )}\webleft (S\mathbin {\diamond }R,T\mathbin {\diamond }R\webright ) \]
is surjective for each $S,T\in \operatorname {\mathrm{Obj}}\webleft (\mathbf{Rel}\webleft (B,X\webright )\webright )$, i.e. iff , whenever $S\mathbin {\diamond }R\subset T\mathbin {\diamond }R$, we also have $S\subset T$.