8.2.3 The Inverse of a Function

    Let $f\colon A\to B$ be a function.

    The inverse of $f$ is the relation $f^{-1}\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}A$ defined as follows:

    • Viewing relations from $B$ to $A$ as subsets of $B\times A$, we define

      \[ f^{-1}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ (b,f^{-1}(b))\in B\times A\ \middle |\ a\in A\right\} , \]

      where

      \[ f^{-1}(b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f(a)=b\right\} \]

      for each $b\in B$.

    • Viewing relations from $B$ to $A$ as functions $B\times A\to \{ \mathsf{true},\mathsf{false}\} $, we define

      \[ [f^{-1}]^{b}_{a}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if there exists $a\in A$ with $f(a)=b$,}\\ \mathsf{false}& \text{otherwise} \end{cases} \]

      for each $(b,a)\in B\times A$.

    • Viewing relations from $B$ to $A$ as functions $B\to \mathcal{P}(A)$, we define

      \[ f^{-1}(b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ a\in A\ \middle |\ f(a)=b\right\} \]

      for each $b\in B$.

    Let $f\colon A\to B$ be a function.

  • 1.

    Functoriality. The assignment $A\mapsto A$, $f\mapsto f^{-1}$ defines a functor

    \[ (-)^{-1}\colon \mathsf{Sets}\to \mathrm{Rel} \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

      \[ \left[(-)^{-1}\right](A)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A. \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on $\operatorname {\mathrm{Hom}}$-sets

      \[ (-)^{-1}_{A,B}\colon \mathsf{Sets}(A,B) \to \mathrm{Rel}(A,B) \]

      of $(-)^{-1}$ at $(A,B)$ is defined by

      \[ (-)^{-1}_{A,B}(f) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left[(-)^{-1}\right](f), \]

      where $f^{-1}$ is the inverse of $f$ as in Definition 8.2.3.1.1.

    In particular, the following statements are true:

    • Preservation of Identities. We have

      \[ \operatorname {\mathrm{id}}^{-1}_{A}=\chi _{A} \]

      for each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$.

    • Preservation of Composition. We have

      \[ (g\circ f)^{-1}=g^{-1}\mathbin {\diamond }f^{-1} \]

      for pair of functions $f\colon A\to B$ and $g\colon B\to C$.

  • 2.

    Adjointness Inside $\boldsymbol {\mathsf{Rel}}$. We have an adjunction

    in $\boldsymbol {\mathsf{Rel}}$.

  • 3.

    Interaction With Converses of Relations. We have

    \begin{align*} (f^{-1})^{\dagger } & = \operatorname {\mathrm{Gr}}(f),\\ \operatorname {\mathrm{Gr}}(f)^{\dagger } & = f^{-1}. \end{align*}

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: