The collage of $R$1 is the poset $\smash {\mathbf{Coll}(R)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\mathrm{Coll}(R),\preceq _{\mathbf{Coll}(R)})}$ consisting of:
-
•
The Underlying Set. The set $\mathrm{Coll}(R)$ defined by
\[ \mathrm{Coll}(R)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B. \] -
•
The Partial Order. The partial order
\[ \preceq _{\mathbf{Coll}(R)}\colon \mathrm{Coll}(R)\times \mathrm{Coll}(R)\to \{ \mathsf{true},\mathsf{false}\} \]on $\mathrm{Coll}(R)$ defined by
\[ \mathord {\preceq }(a,b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $a=b$ or $a\sim _{R}b$,}\\ \mathsf{false}& \text{otherwise.}\end{cases} \]
- 1Further Terminology: Also called the cograph of $R$.