9.2.8 The Collage of a Relation

    Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.

    The collage of $R$1 is the poset $\smash {\mathbf{Coll}(R)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\mathrm{Coll}(R),\preceq _{\mathbf{Coll}(R)})}$ consisting of:

    • The Underlying Set. The set $\mathrm{Coll}(R)$ defined by

      \[ \mathrm{Coll}(R)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B. \]
    • The Partial Order. The partial order

      \[ \preceq _{\mathbf{Coll}(R)}\colon \mathrm{Coll}(R)\times \mathrm{Coll}(R)\to \{ \mathsf{true},\mathsf{false}\} \]

      on $\mathrm{Coll}(R)$ defined by

      \[ \mathord {\preceq }(a,b)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \mathsf{true}& \text{if $a=b$ or $a\sim _{R}b$,}\\ \mathsf{false}& \text{otherwise.}\end{cases} \]


    1. 1Further Terminology: Also called the cograph of $R$.

    We write $\mathsf{Pos}_{/\Delta ^{1}}(A,B)$ for the category defined as the pullback

    \[ \mathsf{Pos}_{/\Delta ^{1}}(A,B)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{pt}\operatorname*{\mathbin {\times }}_{[A],\mathsf{Pos},\mathrm{ev}_{0}}\mathsf{Pos}_{/\Delta ^{1}}\operatorname*{\mathbin {\times }}_{\mathrm{ev}_{1},\mathsf{Pos},[B]}\mathsf{pt}, \]

    as in the diagram

    In detail, $\mathsf{Pos}_{/\Delta ^{1}}(A,B)$ is the category where:

    • Objects. An object of $\mathsf{Pos}_{/\Delta ^{1}}(A,B)$ is a pair $(X,\phi _{X})$ consisting of

      • A poset $X$;

      • A morphism $\phi _{X}\colon X\to \Delta ^{1}$;

      such that we have

      \begin{align*} \phi ^{-1}_{X}(0) & = A,\\ \phi ^{-1}_{X}(1) & = B. \end{align*}
    • Morphisms. A morphism of $\mathsf{Pos}_{/\Delta ^{1}}(A,B)$ from $(X,\phi _{X})$ to $(Y,\phi _{Y})$ is a morphism of posets $f\colon X\to Y$ making the diagram

      commute.

    Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.

    1. 1.

      Functoriality. The assignment $R\mapsto \mathbf{Coll}(R)$ defines a functor

      \[ \mathbf{Coll}\colon \mathbf{Rel}(A,B)\to \mathsf{Pos}_{/\Delta ^{1}}(A,B), \]

      where

      • Action on Objects. For each $R\in \operatorname {\mathrm{Obj}}(\mathbf{Rel}(A,B))$, we have

        \[ [\mathbf{Coll}](R) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}(\mathbf{Coll}(R),\phi _{R}) \]

        for each $R\in \mathbf{Rel}(A,B)$, where

        • The poset $\mathbf{Coll}(R)$ is the collage of $R$ of Definition 9.2.8.1.1.

        • The morphism $\phi _{R}\colon \mathbf{Coll}(R)\to \Delta ^{1}$ is given by

          \[ \phi _{R}(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} 0 & \text{if $x\in A$,}\\ 1 & \text{if $x\in B$} \end{cases} \]

          for each $x\in \mathbf{Coll}(R)$.

      • Action on Morphisms. For each $R,S\in \operatorname {\mathrm{Obj}}(\mathbf{Rel}(A,B))$, the action on $\operatorname {\mathrm{Hom}}$-sets

        \[ \mathbf{Coll}_{R,S}\colon \operatorname {\mathrm{Hom}}_{\mathbf{Rel}(A,B)}(R,S) \to \mathsf{Pos}(\mathbf{Coll}(R),\mathbf{Coll}(S)) \]

        of $\mathbf{Coll}$ at $(R,S)$ is given by sending an inclusion

        \[ \iota \colon R\subset S \]

        to the morphism

        \[ \mathbf{Coll}(\iota )\colon \mathbf{Coll}(R)\to \mathbf{Coll}(S) \]

        of posets over $\Delta ^{1}$ defined by

        \[ [\mathbf{Coll}(\iota )](x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x \]

        for each $x\in \mathbf{Coll}(R)$.1

  • 2.

    Equivalence. The functor of Item 1 is an equivalence of categories.


    1. 1Note that this is indeed a morphism of posets: if $x\preceq _{\mathbf{Coll}(R)}y$, then $x=y$ or $x\sim _{R}y$, so we have either $x=y$ or $x\sim _{S}y$ (as $R\subset S$), and thus $x\preceq _{\mathbf{Coll}(S)}y$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: