The strong inverse image function associated to $R$ is the function
defined by1
for each $V\in \mathcal{P}\webleft (B\webright )$.
- 1Further Terminology: The set $R_{-1}\webleft (V\webright )$ is called the strong inverse image of $V$ by $R$.
Let $A$ and $B$ be sets and let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
The strong inverse image function associated to $R$ is the function
defined by1
for each $V\in \mathcal{P}\webleft (B\webright )$.
Identifying subsets of $B$ with relations from $\mathrm{pt}$ to $B$ via Chapter 4: Constructions With Sets, of
, we see that the inverse image function associated to $R$ is equivalently the function
defined by
We have
Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
Functoriality. The assignment $V\mapsto R_{-1}\webleft (V\webright )$ defines a functor
where
Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have
Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (B\webright )$:
If $U\subset V$, then $R_{-1}\webleft (U\webright )\subset R_{-1}\webleft (V\webright )$.
Adjointness. We have an adjunction
natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$, i.e. such that:
We have $R_{!}\webleft (U\webright )\subset V$.
We have $U\subset R_{-1}\webleft (V\webright )$.
Lax Preservation of Colimits. We have an inclusion of sets
natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have inclusions
natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
Preservation of Limits. We have an equality of sets
natural in $\left\{ U_{i}\right\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have equalities
natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
Symmetric Lax Monoidality With Respect to Unions. The codirect image function of Item 1 has a symmetric lax monoidal structure
being equipped with inclusions
natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
being equipped with equalities
natural in $U,V\in \mathcal{P}\webleft (B\webright )$.
Interaction With Weak Inverse Images I. We have
for each $V\in \mathcal{P}\webleft (B\webright )$.
Interaction With Weak Inverse Images II. Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation from $A$ to $B$.
Conversely, if we have $R_{-1}=R^{-1}$, then $R$ is total and functional.
Indeed, we have
Taking $V=B\setminus V$ then implies the original statement.
Let $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ be a relation.
Functionality I. The assignment $R\mapsto R_{-1}$ defines a function
Functionality II. The assignment $R\mapsto R_{-1}$ defines a function
Interaction With Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have
Interaction With Composition. For each pair of composable relations $R\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ and $S\colon B\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}C$, we have
for each $U\in \mathcal{P}\webleft (A\webright )$. Thus $\webleft (\chi _{A}\webright )_{-1}=\operatorname {\mathrm{id}}_{\mathcal{P}\webleft (A\webright )}$.
for each $U\in \mathcal{P}\webleft (C\webright )$, where we used Item 2 of Proposition 8.5.2.1.3, which implies that the conditions
We have $S_{!}\webleft (R\webleft (a\webright )\webright )\subset U$.
We have $R\webleft (a\webright )\subset S_{-1}\webleft (U\webright )$.
are equivalent. Thus $\webleft (S\mathbin {\diamond }R\webright )_{-1}=R_{-1}\circ S_{-1}$.