11.1.1 Foundations

    A category $\smash {\webleft (\mathcal{C},\circ ^{\mathcal{C}},\mathbb {1}^{\mathcal{C}}\webright )}$ consists of:

    • Objects. A class $\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ of objects.

    • Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, a class $\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )$, called the class of morphisms of $\mathcal{C}$ from $A$ to $B$.

    • Identities. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, a map of sets

      \[ \mathbb {1}^{\mathcal{C}}_{A}\colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,A\webright ), \]

      called the unit map of $\mathcal{C}$ at $A$, determining a morphism

      \[ \operatorname {\mathrm{id}}_{A} \colon A \to A \]

      of $\mathcal{C}$, called the identity morphism of $A$.

    • Composition. For each $A,B,C\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, a map of sets

      \[ \circ ^{\mathcal{C}}_{A,B,C} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (B,C\webright )\times \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright ) \to \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,C\webright ), \]

      called the composition map of $\mathcal{C}$ at $\webleft (A,B,C\webright )$.

    such that the following conditions are satisfied:

    1. 1.

      Associativity. The diagram

      commutes, i.e. for each composable triple $\webleft (f,g,h\webright )$ of morphisms of $\mathcal{C}$, we have

      \[ \webleft (f\circ g\webright )\circ h = f\circ \webleft (g\circ h\webright ). \]
    2. 2.

      Left Unitality. The diagram

      commutes, i.e. for each morphism $f\colon A\to B$ of $\mathcal{C}$, we have

      \[ \operatorname {\mathrm{id}}_{B}\circ f=f. \]
    3. 3.

      Right Unitality. The diagram

      commutes, i.e. for each morphism $f\colon A\to B$ of $\mathcal{C}$, we have

      \[ f\circ \operatorname {\mathrm{id}}_{A}=f. \]

    Let $\mathcal{C}$ be a category.

    1. 1.

      We also write $\mathcal{C}\webleft (A,B\webright )$ for $\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )$.

    2. 2.

      We write $\operatorname {\mathrm{Mor}}\webleft (\mathcal{C}\webright )$ for the class of all morphisms of $\mathcal{C}$.

    Let $\kappa $ be a regular cardinal. A category $\mathcal{C}$ is

    1. 1.

      Locally small if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the class $\operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )$ is a set.

    2. 2.

      Locally essentially small if, for each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the class

      \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}\webleft (A,B\webright )/\left\{ \text{isomorphisms}\right\} \]

      is a set.

  • 3.

    Small if $\mathcal{C}$ is locally small and $\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ is a set.

  • 4.

    $\kappa $-Small if $\mathcal{C}$ is locally small, $\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$ is a set, and we have $\# {\operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )}<\kappa $.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: