11.3.2.2 Sets of Connected Components of Categories

    Let $\mathcal{C}$ be a category.

    The set of connected components of $\mathcal{C}$ is the set $\pi _{0}(\mathcal{C})$ whose elements are the connected components of $\mathcal{C}$.

    Let $\mathcal{C}$ be a category.

    1. 1.

      Functoriality. The assignment $\mathcal{C}\mapsto \pi _{0}(\mathcal{C})$ defines a functor

      \[ \pi _{0} \colon \mathsf{Cats}\to \mathsf{Sets}. \]
    2. 2.

      Adjointness. We have a quadruple adjunction

    3. 3.

      Interaction With Groupoids. If $\mathcal{C}$ is a groupoid, then we have an isomorphism of categories

      \[ \pi _{0}(\mathcal{C})\cong \mathrm{K}(\mathcal{C}), \]

      where $\mathrm{K}(\mathcal{C})$ is the set of isomorphism classes of $\mathcal{C}$ of Unresolved reference.

    4. 4.

      Preservation of Colimits. The functor $\pi _{0}$ of Item 1 preserves colimits. In particular, we have bijections of sets

      \[ \begin{gathered} \begin{aligned} \pi _{0}(\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}) & \cong \pi _{0}(\mathcal{C})\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\pi _{0}(\mathcal{D}),\\ \pi _{0}(\mathcal{C}\mathbin {\textstyle \coprod _{\mathcal{E}}}\mathcal{D}) & \cong \pi _{0}(\mathcal{C})\mathbin {\textstyle \coprod _{\pi _{0}(\mathcal{E})}}\pi _{0}(\mathcal{D}), \end{aligned} \\ \pi _{0}(\operatorname {\mathrm{CoEq}}(\mathcal{C}\underset {G}{\overset {F}{\rightrightarrows }}\mathcal{D})) \cong \operatorname {\mathrm{CoEq}}(\pi _{0}(\mathcal{C})\underset {\pi _{0}(G)}{\overset {\pi _{0}(F)}{\rightrightarrows }}\pi _{0}(\mathcal{D})), \end{gathered} \]

      natural in $\mathcal{C},\mathcal{D},\mathcal{E}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

    5. 5.

      Symmetric Strong Monoidality With Respect to Coproducts. The connected components functor of Item 1 has a symmetric strong monoidal structure

      \[ (\pi _{0},\pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0},\pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}}) \colon (\mathsf{Cats},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}_{\mathsf{cat}}) \to (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\text{Ø}), \]

      being equipped with isomorphisms

      \[ \begin{gathered} \pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathcal{C},\mathcal{D}} \colon \pi _{0}(\mathcal{C})\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\pi _{0}(\mathcal{D}) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\pi _{0}(\mathcal{C}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\mathcal{D}),\\ \pi ^{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{0|\mathbb {1}} \colon \text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\pi _{0}(\text{Ø}_{\mathsf{cat}}), \end{gathered} \]

      natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

  • 6.

    Symmetric Strong Monoidality With Respect to Products. The connected components functor of Item 1 has a symmetric strong monoidal structure

    \[ (\pi _{0},\pi ^{\times }_{0},\pi ^{\times }_{0|\mathbb {1}}) \colon (\mathsf{Cats},\times ,\mathsf{pt}) \to (\mathsf{Sets},\times ,\mathrm{pt}), \]

    being equipped with isomorphisms

    \[ \begin{gathered} \pi ^{\times }_{0|\mathcal{C},\mathcal{D}} \colon \pi _{0}(\mathcal{C})\times \pi _{0}(\mathcal{D}) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\pi _{0}(\mathcal{C}\times \mathcal{D}),\\ \pi ^{\times }_{0|\mathbb {1}} \colon \mathrm{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\pi _{0}(\mathsf{pt}), \end{gathered} \]

    natural in $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$.

  • Item 1: Functoriality
    Omitted.

    Item 2: Adjointness
    This is proved in Proposition 11.3.1.1.1.

    Item 3: Interaction With Groupoids
    Omitted.

    Item 4: Preservation of Colimits
    This follows from Item 2 and Unresolved reference of Unresolved reference.

    Item 5: Symmetric Strong Monoidality With Respect to Coproducts
    Omitted.

    Item 6: Symmetric Strong Monoidality With Respect to Products
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: