11.6.2 Full Functors

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories.

    A functor $F\colon \mathcal{C}\to \mathcal{D}$ is full if, for each $A,B\in \operatorname {\mathrm{Obj}}(\mathcal{C})$, the action on morphisms

    \[ F_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B}) \]

    of $F$ at $(A,B)$ is surjective.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ and $G\colon \mathcal{D}\to \mathcal{E}$ be functors.

    1. 1.

      Interaction With Composition. If $F$ and $G$ are full, then so is $G\circ F$.

    2. 2.

      Interaction With Postcomposition I. If $F$ is full, then the postcomposition functor

      \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      can fail to be full.

    3. 3.

      Interaction With Postcomposition II. If, for each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the postcomposition functor

      \[ F_{*} \colon \mathsf{Fun}(\mathcal{X},\mathcal{C}) \to \mathsf{Fun}(\mathcal{X},\mathcal{D}) \]

      is full, then $F$ is also full.

    4. 4.

      Interaction With Precomposition I. If $F$ is full, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      can fail to be full.

    5. 5.

      Interaction With Precomposition II. If, for each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is full, then $F$ can fail to be full.

    6. 6.

      Interaction With Precomposition III. If $F$ is essentially surjective and full, then the precomposition functor

      \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

      is full (and also faithful by Item 4 of Proposition 11.6.1.1.2).

    7. 7.

      Interaction With Precomposition IV. The following conditions are equivalent:

      1. (a)

        For each $\mathcal{X}\in \operatorname {\mathrm{Obj}}(\mathsf{Cats})$, the precomposition functor

        \[ F^{*} \colon \mathsf{Fun}(\mathcal{D},\mathcal{X}) \to \mathsf{Fun}(\mathcal{C},\mathcal{X}) \]

        is full.

  • (b)

    The functor $F\colon \mathcal{C}\to \mathcal{D}$ is a corepresentably full morphism in $\mathsf{Cats}_{\mathsf{2}}$ in the sense of Chapter 14: Types of Morphisms in Bicategories, Definition 14.2.1.1.1.

  • (c)

    The components

    \[ \eta _{G}\colon G\Longrightarrow \operatorname {\mathrm{Ran}}_{F}(G\circ F) \]

    of the unit

    \[ \eta \colon \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})}\Longrightarrow \operatorname {\mathrm{Ran}}_{F}\circ F^{*} \]

    of the adjunction $F^{*}\dashv \operatorname {\mathrm{Ran}}_{F}$ are all retractions/split epimorphisms.

  • (d)

    The components

    \[ \epsilon _{G}\colon \operatorname {\mathrm{Lan}}_{F}(G\circ F)\Longrightarrow G \]

    of the counit

    \[ \epsilon \colon \operatorname {\mathrm{Lan}}_{F}\circ F^{*}\Longrightarrow \operatorname {\mathrm{id}}_{\mathsf{Fun}(\mathcal{D},\mathcal{X})} \]

    of the adjunction $\operatorname {\mathrm{Lan}}_{F}\dashv F^{*}$ are all sections/split monomorphisms.

  • (e)

    For each $B\in \operatorname {\mathrm{Obj}}(\mathcal{D})$, there exist:

    • An object $A_{B}$ of $\mathcal{C}$;

    • A morphism $s_{B}\colon B\to F(A_{B})$ of $\mathcal{D}$;

    • A morphism $r_{B}\colon F(A_{B})\to B$ of $\mathcal{D}$;

    satisfying the following condition:

    • (★)
    • For each $A\in \operatorname {\mathrm{Obj}}(\mathcal{C})$ and each pair of morphisms
      \begin{align*} r & \colon F(A) \to B,\\ s & \colon B \to F(A) \end{align*}
      of $\mathcal{D}$, we have
      \[ [(A_{B},s_{B},r_{B})]=[(A,s,r\circ s_{B}\circ r_{B})] \]
      in $\int ^{A\in \mathcal{C}}h^{B'}_{F_{A}}\times h^{F_{A}}_{B}$.
  • Item 1: Interaction With Composition
    Since the map

    \[ (G\circ F)_{A,B} \colon \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) \to \operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    defined as the composition

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B)\xrightarrow {F_{A,B}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(F_{A},F_{B})\xrightarrow {G_{F(A),F(B)}}\operatorname {\mathrm{Hom}}_{\mathcal{D}}(G_{F_{A}},G_{F_{B}}), \]

    is a composition of surjective functions, it follows from Unresolved reference that it is also surjective. Therefore $G\circ F$ is full.

    Item 2: Interaction With Postcomposition I
    We follow the proof (completely formalised in cubical Agda!) given by Naïm Camille Favier in [[Unknown Reference: favier:postcompose-not-full]]. Let $\mathcal{C}$ be the category where:

    • Objects. We have $\operatorname {\mathrm{Obj}}(\mathcal{C})=\left\{ A,B\right\} $.

    • Morphisms. We have

      \begin{align*} \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,A) & = \left\{ e_{A},\operatorname {\mathrm{id}}_{A}\right\} ,\\ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(B,B) & = \left\{ e_{B},\operatorname {\mathrm{id}}_{B}\right\} ,\\ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(A,B) & = \left\{ f,g\right\} ,\\ \operatorname {\mathrm{Hom}}_{\mathcal{C}}(B,A) & = \text{Ø}. \end{align*}
    • Composition. The nontrivial compositions in $\mathcal{C}$ are the following:

      \[ \begin{aligned} e_{A}\circ e_{A} & = \operatorname {\mathrm{id}}_{A},\\ e_{B}\circ e_{B} & = \operatorname {\mathrm{id}}_{B}, \end{aligned} \quad \begin{aligned} f\circ e_{A} & = g,\\ g\circ e_{A} & = f, \end{aligned} \quad \begin{aligned} e_{B}\circ f & = f,\\ e_{B}\circ g & = g. \end{aligned} \]

    We may picture $\mathcal{C}$ as follows:

    Next, let $\mathcal{D}$ be the walking arrow category $\mathbb {1}$ of Definition 11.2.5.1.1 and let $F\colon \mathcal{C}\to \mathbb {1}$ be the functor given on objects by

    \begin{align*} F(A) & = 0,\\ F(B) & = 1 \end{align*}

    and on non-identity morphisms by

    \[ \begin{aligned} F(f) & = f_{01},\\ F(g) & = f_{01}, \end{aligned} \quad \begin{aligned} F(e_{A}) & = \operatorname {\mathrm{id}}_{0},\\ F(e_{B}) & = \operatorname {\mathrm{id}}_{1}. \end{aligned} \]

    Finally, let $\mathcal{X}=\mathsf{B}\mathbb {Z}_{/2}$ be the walking involution and let $\iota _{A},\iota _{B}\colon \mathsf{B}\mathbb {Z}_{/2}\rightrightarrows \mathcal{C}$ be the inclusion functors from $\mathsf{B}\mathbb {Z}_{/2}$ to $\mathcal{C}$ with

    \begin{align*} \iota _{A}(\bullet ) & = A,\\ \iota _{B}(\bullet ) & = B. \end{align*}

    Since every morphism in $\mathbb {1}$ has a preimage in $\mathcal{C}$ by $F$, the functor $F$ is full. Now, for $F_{*}$ to be full, the map

    would need to be surjective. However, as we will show next, we have

    \begin{gather*} \operatorname {\mathrm{Nat}}(\iota _{A},\iota _{B}) = \text{Ø},\\ \operatorname {\mathrm{Nat}}(F\circ \iota _{A},F\circ \iota _{B}) \cong \mathrm{pt}, \end{gather*}

    so this is impossible:

    • Proof of $\operatorname {\mathrm{Nat}}(\iota _{A},\iota _{B})=\text{Ø}$: A natural transformation $\alpha \colon \iota _{A}\Rightarrow \iota _{B}$ consists of a morphism

      \[ \alpha \colon \underbrace{\iota _{A}(\bullet )}_{=A}\to \underbrace{\iota _{B}(\bullet )}_{=B} \]

      in $\mathcal{C}$ making the diagram

      commute for each $e\in \operatorname {\mathrm{Hom}}_{\mathsf{B}\mathbb {Z}_{/2}}(\bullet ,\bullet )\cong \mathbb {Z}_{/2}$. We have two cases:

      1. (a)

        If $\alpha =f$, the naturality diagram for the unique nonidentity element of $\mathbb {Z}_{/2}$ is given by

        However, $e_{B}\circ f=f$ and $f\circ e_{A}=g$, so this diagram does not commute.

      2. (b)

        If $\alpha =g$, the naturality diagram for the unique nonidentity element of $\mathbb {Z}_{/2}$ is given by

        However, $e_{B}\circ g=g$ and $g\circ e_{A}=f$, so this diagram does not commute.

      As a result, there are no natural transformations from $\iota _{A}$ to $\iota _{B}$.

    • Proof of $\operatorname {\mathrm{Nat}}(F\circ \iota _{A},F\circ \iota _{B})\cong \mathrm{pt}$: A natural transformation

      \[ \beta \colon F\circ \iota _{A}\Rightarrow F\circ \iota _{B} \]

      consists of a morphism

      \[ \beta \colon \underbrace{[F\circ \iota _{A}](\bullet )}_{=0}\to \underbrace{[F\circ \iota _{B}](\bullet )}_{=1} \]

      in $\mathbb {1}$ making the diagram

      commute for each $e\in \operatorname {\mathrm{Hom}}_{\mathsf{B}\mathbb {Z}_{/2}}(\bullet ,\bullet )\cong \mathbb {Z}_{/2}$. Since the only morphism from $0$ to $1$ in $\mathbb {1}$ is $f_{01}$, we must have $\beta =f_{01}$ if such a transformation were to exist, and in fact it indeed does, as in this case the naturality diagram above becomes
      for each $e\in \mathbb {Z}_{/2}$, and this diagram indeed commutes, making $\beta $ into a natural transformation.

    This finishes the proof.

    Item 3: Interaction With Postcomposition II
    Taking $\mathcal{X}=\mathsf{pt}$, it follows by assumption that the functor

    \[ F_{*}\colon \mathsf{Fun}(\mathsf{pt},\mathcal{C})\to \mathsf{Fun}(\mathsf{pt},\mathcal{D}) \]

    is full. However, by Item 5 of Proposition 11.10.1.1.2, we have isomorphisms of categories

    \begin{align*} \mathsf{Fun}(\mathsf{pt},\mathcal{C}) & \cong \mathcal{C},\\ \mathsf{Fun}(\mathsf{pt},\mathcal{D}) & \cong \mathcal{D} \end{align*}

    and the diagram

    commutes. It then follows from Item 1 that $F$ is full.

    Item 4: Interaction With Precomposition I
    Omitted.

    Item 5: Interaction With Precomposition II
    See p. 47 of [BS, Lectures on $n$-Categories and Cohomology].

    Item 6: Interaction With Precomposition III
    Omitted, but see for a formalised proof.

    Item 7: Interaction With Precomposition IV
    We claim Item 7a, Item 7b, Item 7c, Item 7d, and Item 7e are equivalent:

    This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: