11.6.8 Isomorphisms of Categories

    An isomorphism of categories is a pair of functors

    \begin{align*} F & \colon \mathcal{C}\to \mathcal{D},\\ G & \colon \mathcal{D}\to \mathcal{C} \end{align*}

    such that we have

    \begin{align*} G\circ F & = \operatorname {\mathrm{id}}_{\mathcal{C}},\\ F\circ G & = \operatorname {\mathrm{id}}_{\mathcal{D}}. \end{align*}

    Categories can be equivalent but non-isomorphic. For example, the category consisting of two isomorphic objects is equivalent to $\mathsf{pt}$, but not isomorphic to it.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor.

    1. 1.

      Characterisations. If $\mathcal{C}$ and $\mathcal{D}$ are small, then the following conditions are equivalent:

      1. (a)

        The functor $F$ is an isomorphism of categories.

      2. (b)

        The functor $F$ is fully faithful and bijective on objects.

  • (c)

    For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the precomposition functor

    \[ F^{*}\colon \mathsf{Fun}\webleft (\mathcal{D},\mathcal{X}\webright )\to \mathsf{Fun}\webleft (\mathcal{C},\mathcal{X}\webright ) \]

    is an isomorphism of categories.

  • (d)

    For each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the postcomposition functor

    \[ F_{*}\colon \mathsf{Fun}\webleft (\mathcal{X},\mathcal{C}\webright )\to \mathsf{Fun}\webleft (\mathcal{X},\mathcal{D}\webright ) \]

    is an isomorphism of categories.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: