11.10.2 The Category of Categories and Functors

    The category of (small) categories and functors is the category $\mathsf{Cats}$ where

    • Objects. The objects of $\mathsf{Cats}$ are small categories.

    • Morphisms. For each $\mathcal{C},\mathcal{D}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, we have

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{D}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{Obj}}\webleft (\mathsf{Fun}\webleft (\mathcal{C},\mathcal{D}\webright )\webright ). \]
    • Identities. For each $\mathcal{C}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the unit map

      \[ \mathbb {1}^{\mathsf{Cats}}_{\mathcal{C}} \colon \mathrm{pt}\to \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{C}\webright ) \]

      of $\mathsf{Cats}$ at $\mathcal{C}$ is defined by

      \[ \operatorname {\mathrm{id}}^{\mathsf{Cats}}_{\mathcal{C}} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname {\mathrm{id}}_{\mathcal{C}}, \]

      where $\operatorname {\mathrm{id}}_{\mathcal{C}}\colon \mathcal{C}\to \mathcal{C}$ is the identity functor of $\mathcal{C}$ of Example 11.5.1.1.4.

    • Composition. For each $\mathcal{C},\mathcal{D},\mathcal{E}\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Cats}\webright )$, the composition map

      \[ \circ ^{\mathsf{Cats}}_{\mathcal{C},\mathcal{D},\mathcal{E}} \colon \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{D},\mathcal{E}\webright ) \times \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{D}\webright ) \to \operatorname {\mathrm{Hom}}_{\mathsf{Cats}}\webleft (\mathcal{C},\mathcal{E}\webright ) \]

      of $\mathsf{Cats}$ at $\webleft (\mathcal{C},\mathcal{D},\mathcal{E}\webright )$ is given by

      \[ G\mathbin {{\circ }^{\mathsf{Cats}}_{\mathcal{C},\mathcal{D},\mathcal{E}}}F \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}G\circ F, \]

      where $G\circ F\colon \mathcal{C}\to \mathcal{E}$ is the composition of $F$ and $G$ of Definition 11.5.1.1.5.

    Let $\mathcal{C}$ be a category.

  • 1.

    Co/Completeness. The category $\mathsf{Cats}$ is complete and cocomplete.

  • 2.

    Cartesian Monoidal Structure. The quadruple $\webleft (\mathsf{Cats},\times ,\mathsf{pt},\mathsf{Fun}\webright )$ is a Cartesian closed monoidal category.

  • Item 1: Co/Completeness
    Omitted.

    Item 2: Cartesian Monoidal Structure
    Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: