4.4.2 Functoriality of Powersets

    Let $X$ be a set.

    1. 1.

      Functoriality I. The assignment $X\mapsto \mathcal{P}(X)$ defines a functor

      \[ \mathcal{P}_{!}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

      where

      • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

        \[ \mathcal{P}_{!}(A)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(A). \]
      • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on morphisms

        \[ \mathcal{P}_{*|A,B}\colon \mathsf{Sets}(A,B)\to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)) \]

        of $\mathcal{P}_{!}$ at $(A,B)$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

        \[ \mathcal{P}_{!}(f)\colon \mathcal{P}(A)\to \mathcal{P}(B) \]

        defined by

        \[ \mathcal{P}_{!}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}, \]

        as in Definition 4.6.1.1.1.

  • 2.

    Functoriality II. The assignment $X\mapsto \mathcal{P}(X)$ defines a functor

    \[ \mathcal{P}^{-1}\colon \mathsf{Sets}^{\mathsf{op}}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

      \[ \mathcal{P}^{-1}(A)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(A). \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on morphisms

      \[ \mathcal{P}^{-1}_{A,B}\colon \mathsf{Sets}(A,B)\to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A)) \]

      of $\mathcal{P}^{-1}$ at $(A,B)$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}^{-1}(f)\colon \mathcal{P}(B)\to \mathcal{P}(A) \]

      defined by

      \[ \mathcal{P}^{-1}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}, \]

      as in Definition 4.6.2.1.1.

  • 3.

    Functoriality III. The assignment $X\mapsto \mathcal{P}(X)$ defines a functor

    \[ \mathcal{P}_{*}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, we have

      \[ \mathcal{P}_{*}(A)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}(A). \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$, the action on morphisms

      \[ \mathcal{P}_{!|A,B}\colon \mathsf{Sets}(A,B)\to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B)) \]

      of $\mathcal{P}_{*}$ at $(A,B)$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{*}(f)\colon \mathcal{P}(A)\to \mathcal{P}(B) \]

      defined by

      \[ \mathcal{P}_{*}(f)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}, \]

      as in Definition 4.6.3.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: