4.4.2 Functoriality of Powersets

Let $X$ be a set.

  1. 1.

    Functoriality I. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor

    \[ \mathcal{P}_{!}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{!}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{*|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{!}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{!}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{!}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}, \]

      as in Definition 4.6.1.1.1.

  2. 2.

    Functoriality II. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor

    \[ \mathcal{P}^{-1}\colon \mathsf{Sets}^{\mathsf{op}}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}^{-1}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (B\webright ),\mathcal{P}\webleft (A\webright )\webright ) \]

      of $\mathcal{P}^{-1}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}^{-1}\webleft (f\webright )\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

      defined by

      \[ \mathcal{P}^{-1}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}, \]

      as in Definition 4.6.2.1.1.

  3. 3.

    Functoriality III. The assignment $X\mapsto \mathcal{P}\webleft (X\webright )$ defines a functor

    \[ \mathcal{P}_{*}\colon \mathsf{Sets}\to \mathsf{Sets}, \]

    where

    • Action on Objects. For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, we have

      \[ \mathcal{P}_{*}\webleft (A\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (A\webright ). \]
    • Action on Morphisms. For each $A,B\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$, the action on morphisms

      \[ \mathcal{P}_{!|A,B}\colon \mathsf{Sets}\webleft (A,B\webright )\to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ) \]

      of $\mathcal{P}_{*}$ at $\webleft (A,B\webright )$ is the map defined by by sending a map of sets $f\colon A\to B$ to the map

      \[ \mathcal{P}_{*}\webleft (f\webright )\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

      defined by

      \[ \mathcal{P}_{*}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}, \]

      as in Definition 4.6.3.1.1.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: