4.4.3 Adjointness of Powersets I

We have an adjunction

witnessed by a bijection

\[ \underbrace{\mathsf{Sets}^{\mathsf{op}}(\mathcal{P}(X),Y)}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mkern 5mu\mathsf{Sets}(Y,\mathcal{P}(X))} \cong \mathsf{Sets}(X,\mathcal{P}(Y)), \]

natural in $X\in \operatorname {\mathrm{Obj}}(\mathsf{Sets})$ and $Y\in \operatorname {\mathrm{Obj}}(\mathsf{Sets}^{\mathsf{op}})$.

We have

$\mathsf{Sets}^{\mathsf{op}}(\mathcal{P}(A),B)$

$\mathord {\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}}$

$\mathsf{Sets}(B,\mathcal{P}(A))$

$\mathord {\cong }$

$\mathsf{Sets}(B,\mathsf{Sets}(A,\{ \mathsf{t},\mathsf{f}\} ))$

(by Item 2 of Proposition 4.5.1.1.4)

$\mathord {\cong }$

$\mathsf{Sets}(A\times B,\{ \mathsf{t},\mathsf{f}\} )$

(by Item 2 of Proposition 4.1.3.1.3)

$\mathord {\cong }$

$\mathsf{Sets}(A,\mathsf{Sets}(B,\{ \mathsf{t},\mathsf{f}\} ))$

(by Item 2 of Proposition 4.1.3.1.3)

$\mathord {\cong }$

$\mathsf{Sets}(A,\mathcal{P}(B))$,

(by Item 2 of Proposition 4.5.1.1.4)

where all bijections are natural in $A$ and $B$.1


  1. 1Here we are using Item 3 of Proposition 4.5.1.1.4.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: