4.4.3 Adjointness of Powersets I

We have an adjunction

witnessed by a bijection

\[ \underbrace{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mkern 5mu\mathsf{Sets}\webleft (Y,\mathcal{P}\webleft (X\webright )\webright )} \cong \mathsf{Sets}\webleft (X,\mathcal{P}\webleft (Y\webright )\webright ), \]

natural in $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}\webright )$ and $Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}^{\mathsf{op}}\webright )$.

We have

$\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright )$

$\mathord {\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}}$

$\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )$

$\mathord {\cong }$

$\mathsf{Sets}\webleft (B,\mathsf{Sets}\webleft (A,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )$

(by Item 2 of Proposition 4.5.1.1.4)

$\mathord {\cong }$

$\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )$

(by Item 2 of Proposition 4.1.3.1.3)

$\mathord {\cong }$

$\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )$

(by Item 2 of Proposition 4.1.3.1.3)

$\mathord {\cong }$

$\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )$,

(by Item 2 of Proposition 4.5.1.1.4)

where all bijections are natural in $A$ and $B$.1


  1. 1Here we are using Item 3 of Proposition 4.5.1.1.4.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: