Let $f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be a morphism of pointed sets.
Let $f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$ be a morphism of pointed sets.
The morphism $f$ is active if $f^{-1}\webleft (y_{0}\webright )=x_{0}$.
The morphism $f$ is inert if, for each $y\in Y$, the set $f^{-1}\webleft (y\webright )$ has exactly one element.
We write $\mathsf{Sets}^{\mathrm{actv}}_{*}$ for the wide subcategory of $\mathsf{Sets}_{*}$ spanned by pointed sets and the active maps between them.
Here are some examples of active and inert maps of pointed sets.
The map $\mu \colon \left\langle 2\right\rangle \to \left\langle 1\right\rangle $ given by
The map $f\colon \left\langle 2\right\rangle \to \left\langle 2\right\rangle $ given by
The map $f\colon \left\langle 3\right\rangle \to \left\langle 1\right\rangle $ given by
are the morphisms of pointed sets given by
Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.
Active-Inert Factorisation. Every morphism of pointed sets $f\colon \webleft (X,x_{0}\webright )\to \webleft (Y,y_{0}\webright )$ factors uniquely as
where:
The map $i\colon \webleft (X,x_{0}\webright )\to \webleft (K,k_{0}\webright )$ is an inert morphism of pointed sets
The map $a\colon \webleft (K,k_{0}\webright )\to \webleft (Y,y_{0}\webright )$ is an active morphism of pointed sets.
Moreover, this determines an orthogonal factorisation system in $\mathsf{Sets}_{*}$.
$K$ is the pointed set given by
$i\colon X\to K$ is the inert morphism of pointed sets given by
for each $x\in X$;
$a\colon K\to Y$ is the active morphism of pointed sets given by
for each $x\in K$.
Next, let
for each $y\in Y$ (which is well-defined since, as $i$ is inert, $i^{-1}\webleft (y\webright )$ is a singleton for all $y\in Y$). We claim that $\phi $ is the unique diagonal filler in the diagram
for each $x\in X$ and
for each $y\in Y$. Moreover, given another morphism $\psi $ such that the diagram
This finishes the proof.