6.1.5 Active and Inert Morphisms of Pointed Sets

Let $f\colon (X,x_{0})\to (Y,y_{0})$ be a morphism of pointed sets.

  1. 1.

    The morphism $f$ is active if $f^{-1}(y_{0})=x_{0}$.

  2. 2.

    The morphism $f$ is inert if, for each $y\in Y \setminus \left\{ y_0\right\} $, the set $f^{-1}(y)$ has exactly one element.

We write $\mathsf{Sets}^{\mathrm{actv}}_{*}$ for the wide subcategory of $\mathsf{Sets}_{*}$ spanned by pointed sets and the active maps between them.

Here are some examples of active and inert maps of pointed sets.

  1. 1.

    The map $\mu \colon \left\langle 2\right\rangle \to \left\langle 1\right\rangle $ given by

    is active but not inert.

  2. 2.

    The map $f\colon \left\langle 2\right\rangle \to \left\langle 2\right\rangle $ given by

    is inert but not active.

  3. 3.

    The map $f\colon \left\langle 3\right\rangle \to \left\langle 1\right\rangle $ given by

    is neither inert nor active. However, it factors as $f=a\circ i$, where

    \begin{align*} i & \colon \left\langle 3\right\rangle \to \left\langle 2\right\rangle ,\\ a & \colon \left\langle 2\right\rangle \to \left\langle 1\right\rangle \end{align*}

    are the morphisms of pointed sets given by

    with $i$ being inert and $a$ being active.

Let $(X,x_{0})$ and $(Y,y_{0})$ be pointed sets.

  1. 1.

    Active-Inert Factorisation. Every morphism of pointed sets $f\colon (X,x_{0})\to (Y,y_{0})$ factors uniquely as

    \[ f=a\circ i, \]

    where:

    1. (a)

      The map $i\colon (X,x_{0})\to (K,k_{0})$ is an inert morphism of pointed sets

    2. (b)

      The map $a\colon (K,k_{0})\to (Y,y_{0})$ is an active morphism of pointed sets.

    Moreover, this determines an orthogonal factorisation system in $\mathsf{Sets}_{*}$.

Item 1: Active-Inert Factorisation
Let $f\colon X\to Y$ be a morphism of pointed sets. We can factor $f$ as
where:

  • $K$ is the pointed set given by

    \begin{align*} K & = \left\{ x\in X\ \middle |\ f(x)\neq y_{0}\right\} \cup \left\{ x_{0}\right\} \\ & = (X\setminus f^{-1}(y_{0}))\cup \left\{ x_{0}\right\} ; \end{align*}
  • $i\colon X\to K$ is the inert morphism of pointed sets given by

    \[ i(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} x & \text{if $x\in K$},\\ x_{0} & \text{otherwise} \end{cases} \]

    for each $x\in X$;

  • $a\colon K\to Y$ is the active morphism of pointed sets given by

    \[ a(x)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(x) \]

    for each $x\in K$.

Next, let

be a commutative diagram in $\mathsf{Sets}_{*}$. Consider the morphism $\phi \colon Y\to A$ given by

\[ \phi (y)=f(i^{-1}(y)) \]

for each $y\in Y$ (which is well-defined since, as $i$ is inert, $i^{-1}(y)$ is a singleton for all $y\in Y$). We claim that $\phi $ is the unique diagonal filler in the diagram

Indeed, this diagram commutes, as we have

\begin{align*} [\phi \circ i](x) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\phi (i(x))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f(i^{-1}(i(x)))\\ & = f(x) \end{align*}

for each $x\in X$ and

\begin{align*} [a\circ \phi ](y) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a(\phi (y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a(f(i^{-1}(y)))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[a\circ f](i^{-1}(y))\\ & = [g\circ i](i^{-1}(y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g(i(i^{-1}(y)))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}g(y) \end{align*}

for each $y\in Y$. Moreover, given another morphism $\psi $ such that the diagram

commutes, it follows that we must have $\psi =\phi $, since, given $y\in Y$, there exists a unique $x\in X$ such that $i(x)=y$, so we have

\begin{align*} \psi (y) & = \psi (i(x))\\ & = f(x)\\ & = f(i^{-1}(y))\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\phi (y). \end{align*}

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: