11.9.2 Natural Transformations

    Let $\mathcal{C}$ and $\mathcal{D}$ be categories and $F,G\colon \mathcal{C}\rightrightarrows \mathcal{D}$ be functors.

    A natural transformation $\alpha \colon F\Rightarrow G$ from $F$ to $G$ is a transformation

    \[ \left\{ \alpha _{A}\colon F\webleft (A\webright )\to G\webleft (A\webright )\right\} _{A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )} \]

    from $F$ to $G$ such that, for each morphism $f\colon A\to B$ of $\mathcal{C}$, the diagram

    commutes.

    Let $\alpha \colon F\Rightarrow G$ be a natural transformation.

  • 1.

    For each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$, the morphism $\alpha _{A}\colon F_{A}\to G_{A}$ is called the component of $\alpha $ at $A$.

  • 2.

    We denote natural transformations such as $\alpha $ in diagrams as

  • We write $\operatorname {\mathrm{Nat}}\webleft (F,G\webright )$ for the set of natural transformations from $F$ to $G$.

    Two natural transformations $\alpha ,\beta \colon F\Rightarrow G$ are equal if we have

    \[ \alpha _{A}=\beta _{A} \]

    for each $A\in \operatorname {\mathrm{Obj}}\webleft (\mathcal{C}\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: