The symmetric monoidal structure on the category $\mathsf{Sets}_{*}$ of Proposition 7.5.9.1.1 is uniquely determined by the following requirements:
The symmetric monoidal structure on the category $\mathsf{Sets}_{*}$ of Proposition 7.5.9.1.1 is uniquely determined by the following requirements:
Existence of an Internal Hom. The tensor product
of $\mathsf{Sets}_{*}$ admits an internal Hom $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$.
The Unit Object Is $S^{0}$. We have $\mathbb {1}_{\mathsf{Sets}_{*}}\cong S^{0}$.
More precisely, the full subcategory of the category $\mathcal{M}^{\mathrm{cld}}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}_{*}\webright )$ of spanned by the closed symmetric monoidal categories $\left(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\right)$ satisfying Item 1 and Item 2 is contractible (i.e. equivalent to the punctual category).
admits a unique closed symmetric monoidal functor structure
making it into a symmetric monoidal strongly closed isomorphism of categories from $\left(\phantom{\mathrlap {\lambda '}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\webleft [-_{1},-_{2}\webright ]_{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda '$, $\rho '$, $\left.\sigma '\right)$ to the closed symmetric monoidal category $\left(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\times $, $\mathsf{Sets}_{*}\webleft (-_{1},-_{2}\webright )$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\right)$ of Proposition 7.5.9.1.1.
By Chapter 6: Pointed Sets, Item 4 of Proposition 6.1.4.1.1, we also have a natural isomorphism
Composing both natural isomorphisms, we obtain a natural isomorphism
Given $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, we will write
for the component of this isomorphism at $\webleft (X,Y\webright )$.
By , we then have $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$. We will write
for the component of this isomorphism at $\webleft (X,Y\webright )$.
Let $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
Since $\otimes _{\mathsf{Sets}_{*}}$ is part of a closed monoidal structure, it preserves colimits in each variable by .
Since $X\cong \bigvee _{x\in X^{-}}S^{0}$ and $\otimes _{\mathsf{Sets}_{*}}$ preserves colimits in each variable, we have
naturally in $Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, where we have used that $S^{0}$ is the monoidal unit for $\otimes _{\mathsf{Sets}_{*}}$. Thus $X\otimes _{\mathsf{Sets}_{*}}-\cong X\wedge -$ for each $X\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
Similarly, $-\otimes _{\mathsf{Sets}_{*}}Y\cong -\wedge Y$ for each $Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
By , we then have $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$.
Below, we’ll show that if a natural isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$ exists, then it must be unique. This will show that the isomorphism constructed above is equal to the isomorphism $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}|X,Y}\colon X\otimes _{\mathsf{Sets}_{*}}Y\to X\wedge Y$ from before.
in $\mathsf{Sets}_{*}$.
Subdiagrams $\webleft (1\webright )$, $\webleft (2\webright )$, and $\webleft (3\webright )$ commute by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (6\webright )$ commutes trivially.
Subdiagram $\webleft (7\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*}}$, where the equality $\rho ^{\mathsf{Sets}_{*}}_{S^{0}}=\lambda ^{\mathsf{Sets}_{*}}_{S^{0}}$ comes from .
Since all subdiagrams commute, so does the boundary diagram, i.e. the diagram $\webleft (\dagger \webright )$ above. As a result, the diagram
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\lambda ^{\prime ,-1}$.
Subdiagram $\webleft (\ddagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\lambda ^{\mathsf{Sets}_{*},-1}$.
it follows that the diagram
for each $x\in X$, and thus we have
Taking inverses then gives
showing that the diagram
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagrams $\webleft (2\webright )$ and $\webleft (3\webright )$ commute by the functoriality of $\otimes $;
Subdiagram $\webleft (4\webright )$ commutes by the left monoidal unity of $\webleft (\operatorname {\mathrm{id}}^{\otimes },\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}\webright )$, which we proved above;
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\lambda '$;
Subdiagram $\webleft (6\webright )$ commutes by the naturality of $\rho '$, where the equality $\rho '_{\mathbb {1}_{\mathsf{Sets}_{*}}}=\lambda '_{\mathbb {1}_{\mathsf{Sets}_{*}}}$ comes from ;
it follows that the boundary diagram, i.e. diagram $\webleft (\S \webright )$, also commutes. Next, consider the diagram
Subdiagrams $\webleft (1\webright )$ and $\webleft (6\webright )$ commute by ;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (\S \webright )$ commutes, as was shown above;
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\lambda ^{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (4\webright )$ commutes trivially;
Subdiagram $\webleft (5\webright )$ commutes by Chapter 12: Constructions With Monoidal Categories, Item 2c of Item 2 of Proposition 12.1.1.1.4, whose proof uses only the left monoidal unity of $\webleft (\operatorname {\mathrm{id}}^{\otimes },\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}\webright )$, which has been proven above;
it follows that the boundary diagram, i.e. diagram $\webleft (\ddagger \webright )$, also commutes. Next, consider the diagram
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\sigma '$ and the fact that $\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}$ is invertible;
Subdiagram $\webleft (\ddagger \webright )$ commutes as proved above;
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\sigma ^{\mathsf{Sets}_{*}}$ and the fact that $\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}}$ is invertible;
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$;
it follows that the boundary diagram, i.e. diagram $\webleft (\dagger \webright )$ also commutes. Taking inverses for the diagram $\webleft (\dagger \webright )$, we see that the diagram
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\sigma ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}$.
Subdiagram $\webleft (¶\webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\sigma ^{\prime ,-1}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}$.
it follows that the diagram
for each $\webleft (y,x\webright )\in Y\wedge X$, and thus we have
Taking inverses then gives
showing that the diagram
as the composition
Subdiagram $\webleft (1\webright )$ commutes by the braidedness of $\operatorname {\mathrm{id}}^{\otimes }$, as proved above.
Next, consider the diagram
Subdiagrams $\webleft (1\webright )$, $\webleft (2\webright )$, and $\webleft (3\webright )$ commute by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$.
Subdiagrams $\webleft (4\webright )$, $\webleft (5\webright )$, and $\webleft (6\webright )$ commute by the naturality of $\lambda ^{\mathsf{Sets}_{*}}$, where the equality $\lambda ^{\mathsf{Sets}_{*}}_{S^{0}}=\rho ^{\mathsf{Sets}_{*}}_{S^{0}}$ comes from .
Since all subdiagrams commute, so does the boundary diagram, i.e. the diagram $\webleft (\dagger \webright )$ above. As a result, the diagram
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\rho ^{\prime ,-1}$.
Subdiagram $\webleft (\dagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*},-1}$.
it follows that the diagram
for each $a\in X$, and thus we have
Taking inverses then gives
showing that the diagram
Subdiagrams $\webleft (1\webright )$, $\webleft (4\webright )$, $\webleft (5\webright )$, $\webleft (8\webright )$, and $\webleft (11\webright )$ commute by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}}$;
Subdiagram $\webleft (2\webright )$ commutes by the right monoidal unity of $\webleft (\operatorname {\mathrm{id}}^{\otimes }_{\mathsf{Sets}_{*}},\operatorname {\mathrm{id}}^{\otimes }_{\mathbb {1}|\mathsf{Sets}_{*}}\webright )$;
Subdiagram $\webleft (3\webright )$ commutes by the triangle identity for $\webleft (\alpha ',\lambda ',\rho '\webright )$;
Subdiagram $\webleft (7\webright )$ commutes by the naturality of $\rho ^{\mathsf{Sets}_{*}}$;
it follows that the boundary diagram, i.e. diagram $\webleft (\ddagger \webright )$, also commutes. Consider now the diagram
Subdiagrams $\webleft (1\webright )$, $\webleft (3\webright )$, $\webleft (4\webright )$, and $\webleft (6\webright )$ commute by the naturality of $\operatorname {\mathrm{id}}^{\otimes }_{Sets_{*}}$;
Subdiagram $\webleft (\ddagger \webright )$ commutes, as proved above;
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\alpha '$;
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\alpha ^{\mathsf{Sets}_{*}}$;
it follows that the boundary diagram, i.e. diagram $\webleft (\dagger \webright )$, also commutes. Taking inverses on the diagram $\webleft (\dagger \webright )$, we see that the diagram
Subdiagram $\webleft (1\webright )$ commutes by the naturality of $\alpha ^{\mathsf{Sets}_{*},-1}$.
Subdiagram $\webleft (2\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (3\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (\dagger \webright )$ commutes, as proved above.
Subdiagram $\webleft (4\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (5\webright )$ commutes by the naturality of $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathsf{Sets}_{*}}$.
Subdiagram $\webleft (6\webright )$ commutes by the naturality of $\alpha ^{\prime ,-1}$.
it follows that the diagram
Postcomposing both sides with $\lambda ^{\mathsf{Sets}_{*},-1}_{Y}$ and then precomposing both sides with $\operatorname {\mathrm{id}}^{\otimes ,-1}_{\mathbb {1}|\mathsf{Sets}}\otimes _{\mathsf{Sets}}\operatorname {\mathrm{id}}_{Y}$ gives
and thus we have
for each $Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$. Now, let $x\in X$ and consider the naturality diagrams
for each $\webleft (x,y\webright )\in X\wedge Y$. Therefore we have
for each $X,Y\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$ and thus $\phi =\psi $, showing the isomorphism $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\times }$ to be unique.
The symmetric monoidal structure on the category $\mathsf{Sets}_{*}$ of Proposition 7.5.9.1.1 is uniquely determined by the following requirements:
Two-Sided Preservation of Colimits. The tensor product
of $\mathsf{Sets}_{*}$ preserves colimits separately in each variable.
The Unit Object Is $S^{0}$. We have $\mathbb {1}_{\mathsf{Sets}_{*}}\cong S^{0}$.
More precisely, the full subcategory of the category $\mathcal{M}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}_{*}\webright )$ of spanned by the symmetric monoidal categories $\left(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\right)$ satisfying Item 1 and Item 2 is contractible.
Since $\mathsf{Sets}_{*}$ is locally presentable (), it follows from
that Corollary 7.5.10.1.2 is equivalent to the existence of an internal Hom as in Item 1 of Theorem 7.5.10.1.1. The result then follows from Theorem 7.5.10.1.1.
The symmetric monoidal structure on the category $\mathsf{Sets}_{*}$ is the unique symmetric monoidal structure on $\mathsf{Sets}_{*}$ such that the free pointed set functor
admits a symmetric monoidal structure, i.e. the full subcategory of the category $\mathcal{M}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}_{*}\webright )$ of spanned by the symmetric monoidal categories $\left(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\right)$ with respect to which $\webleft (-\webright )^{+}$ admits a symmetric monoidal structure is contractible.
Let $\webleft (\otimes _{\mathsf{Sets}_{*}},\mathbb {1}_{\mathsf{Sets}_{*}},\lambda ^{\mathsf{Sets}_{*}},\rho ^{\mathsf{Sets}_{*}},\sigma ^{\mathsf{Sets}_{*}}\webright )$ be a symmetric monoidal structure on $\mathsf{Sets}_{*}$ such that $\webleft (-\webright )^{+}$ admits a symmetric monoidal structure with respect to $\otimes _{\mathsf{Sets}_{*}}$ and $\wedge $. We have isomorphisms
all natural in $X$ and $Y$. Now, since $\wedge $ preserves colimits in both variables and $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$, it follows that $\otimes _{\mathsf{Sets}_{*}}$ also preserves colimits in both variables, so the result then follows from Corollary 7.5.10.1.2.