The coequaliser of $f$ and $g$ is the coequaliser of $f$ and $g$ in $\mathsf{Sets}$ as in ,
.
-
1.
The Colimit. The set $\operatorname {\mathrm{CoEq}}\webleft (f,g\webright )$ defined by
\[ \operatorname {\mathrm{CoEq}}\webleft (f,g\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B/\mathord {\sim }, \]where $\mathord {\sim }$ is the equivalence relation on $B$ generated by $f\webleft (a\webright )\sim g\webleft (a\webright )$.
-
2.
The Cocone. The map
\[ \operatorname {\mathrm{coeq}}\webleft (f,g\webright )\colon B\twoheadrightarrow \operatorname {\mathrm{CoEq}}\webleft (f,g\webright ) \]given by the quotient map $\pi \colon B\twoheadrightarrow B/\mathord {\sim }$ with respect to the equivalence relation generated by $f\webleft (a\webright )\sim g\webleft (a\webright )$.
-
(b)
There exists $z\in A$ such that $x=g\webleft (z\webright )$ and $y=f\webleft (z\webright )$.
-
(a)
There exists $z_{0}\in A$ satisfying one of the following conditions:
-
(b)
For each $1\leq i\leq n-1$, there exists $z_{i}\in A$ satisfying one of the following conditions:
-
(c)
There exists $z_{n}\in A$ satisfying one of the following conditions:
-
1.
Quotients by Equivalence Relations. Let $R$ be an equivalence relation on a set $X$. We have a bijection of sets
\[ X/\mathord {\sim }_{R}\cong \operatorname {\mathrm{CoEq}}\webleft (R\hookrightarrow X\times X\underset {\operatorname {\mathrm{\mathrm{pr}}}_{2}}{\overset {\operatorname {\mathrm{\mathrm{pr}}}_{1}}{\rightrightarrows }}X\webright ). \] -
1.
Associativity. We have isomorphisms of sets1
\[ \underbrace{\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright )}_{{}=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ g,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright )}\cong \operatorname {\mathrm{CoEq}}\webleft (f,g,h\webright ) \cong \underbrace{\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ g\webright )}_{{}=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ h\webright )}, \]in $\mathsf{Sets}$. -
2.
Unitality. We have an isomorphism of sets
\[ \operatorname {\mathrm{CoEq}}\webleft (f,f\webright )\cong B. \] -
3.
Commutativity. We have an isomorphism of sets
\[ \operatorname {\mathrm{CoEq}}\webleft (f,g\webright ) \cong \operatorname {\mathrm{CoEq}}\webleft (g,f\webright ). \] -
4.
Interaction With Composition. Let
\[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]be functions. We have a surjection
\[ \operatorname {\mathrm{CoEq}}\webleft (h\circ f,k\circ g\webright )\twoheadrightarrow \operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (h,k\webright )\circ h\circ f,\operatorname {\mathrm{coeq}}\webleft (h,k\webright )\circ k\circ g\webright ) \]exhibiting $\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (h,k\webright )\circ h\circ f,\operatorname {\mathrm{coeq}}\webleft (h,k\webright )\circ k\circ g\webright )$ as a quotient of $\operatorname {\mathrm{CoEq}}\webleft (h\circ f,k\circ g\webright )$ by the relation generated by declaring $h\webleft (y\webright )\sim k\webleft (y\webright )$ for each $y\in B$.
-
1That is, the following three ways of forming “the” coequaliser of $\webleft (f,g,h\webright )$ agree:
-
(a)
Take the coequaliser of $\webleft (f,g,h\webright )$, i.e. the colimit of the diagram
in $\mathsf{Sets}$. -
(b)
First take the coequaliser of $f$ and $g$, forming a diagram
\[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}\webleft (f,g\webright )}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ) \]and then take the coequaliser of the composition
\[ A\underset {h}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}\webleft (f,g\webright )}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ), \]obtaining a quotient
\[ \operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright )=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ g,\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\circ h\webright ) \] -
(c)
First take the coequaliser of $g$ and $h$, forming a diagram
\[ A\underset {h}{\overset {g}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}\webleft (g,h\webright )}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}\webleft (g,h\webright ) \]and then take the coequaliser of the composition
\[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}\webleft (g,h\webright )}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}\webleft (g,h\webright ), \]obtaining a quotient
\[ \operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ g\webright )=\operatorname {\mathrm{CoEq}}\webleft (\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ f,\operatorname {\mathrm{coeq}}\webleft (g,h\webright )\circ h\webright ) \]
-
(a)
4.2.5 Coequalisers
Let $A$ and $B$ be sets and let $f,g\colon A\rightrightarrows B$ be functions.
Concretely, the coequaliser of $f$ and $g$ is the pair $\webleft (\operatorname {\mathrm{CoEq}}\webleft (f,g\webright ),\operatorname {\mathrm{coeq}}\webleft (f,g\webright )\webright )$ consisting of:
We claim that $\operatorname {\mathrm{CoEq}}\webleft (f,g\webright )$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have
Indeed, we have
for each $a\in A$. Next, we prove that $\operatorname {\mathrm{CoEq}}\webleft (f,g\webright )$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form
In detail, by Chapter 10: Conditions on Relations, Construction 10.5.2.1.2, the relation $\mathord {\sim }$ of Definition 4.2.5.1.1 is given by declaring $a\sim b$ iff one of the following conditions is satisfied:
In other words, there exist $x_{1},\ldots ,x_{n}\in B$ satisfying the following conditions:
Here are some examples of coequalisers of sets.
Let $A$, $B$, and $C$ be sets.