The coequaliser of $f$ and $g$ is the coequaliser of $f$ and $g$ in $\mathsf{Sets}$ as in ,
.
-
1.
The Colimit. The set $\operatorname {\mathrm{CoEq}}(f,g)$ defined by
\[ \operatorname {\mathrm{CoEq}}(f,g)\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B/\mathord {\sim }, \]where $\mathord {\sim }$ is the equivalence relation on $B$ generated by $f(a)\sim g(a)$.
-
2.
The Cocone. The map
\[ \operatorname {\mathrm{coeq}}(f,g)\colon B\twoheadrightarrow \operatorname {\mathrm{CoEq}}(f,g) \]given by the quotient map $\pi \colon B\twoheadrightarrow B/\mathord {\sim }$ with respect to the equivalence relation generated by $f(a)\sim g(a)$.
-
1.
We have $a=b$;
-
2.
There exist $x_{1},\ldots ,x_{n}\in B$ such that $a\sim 'x_{1}\sim '\cdots \sim 'x_{n}\sim 'b$, where we declare $x\sim 'y$ if one of the following conditions is satisfied:
-
(a)
There exists $z\in A$ such that $x=f(z)$ and $y=g(z)$.
-
(b)
There exists $z\in A$ such that $x=g(z)$ and $y=f(z)$.
In other words, there exist $x_{1},\ldots ,x_{n}\in B$ satisfying the following conditions:
-
(a)
-
(i)
We have $x_{i}=f(z_{i})$ and $x_{i+1}=g(z_{i})$.
-
(ii)
We have $x_{i}=g(z_{i})$ and $x_{i+1}=f(z_{i})$.
-
(c)
There exists $z_{n}\in A$ satisfying one of the following conditions:
-
1.
Quotients by Equivalence Relations. Let $R$ be an equivalence relation on a set $X$. We have a bijection of sets
\[ X/\mathord {\sim }_{R}\cong \operatorname {\mathrm{CoEq}}(R\hookrightarrow X\times X\underset {\operatorname {\mathrm{\mathrm{pr}}}_{2}}{\overset {\operatorname {\mathrm{\mathrm{pr}}}_{1}}{\rightrightarrows }}X). \] -
1.
Associativity. We have isomorphisms of sets1
\[ \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ f,\operatorname {\mathrm{coeq}}(f,g)\circ h)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ g,\operatorname {\mathrm{coeq}}(f,g)\circ h)}\cong \operatorname {\mathrm{CoEq}}(f,g,h) \cong \underbrace{\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ g)}_{{}=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ h)}, \]in $\mathsf{Sets}$. -
2.
Unitality. We have an isomorphism of sets
\[ \operatorname {\mathrm{CoEq}}(f,f)\cong B. \] -
3.
Commutativity. We have an isomorphism of sets
\[ \operatorname {\mathrm{CoEq}}(f,g) \cong \operatorname {\mathrm{CoEq}}(g,f). \] -
4.
Interaction With Composition. Let
\[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]be functions. We have a surjection
\[ \operatorname {\mathrm{CoEq}}(h\circ f,k\circ g)\twoheadrightarrow \operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(h,k)\circ h\circ f,\operatorname {\mathrm{coeq}}(h,k)\circ k\circ g) \]exhibiting $\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(h,k)\circ h\circ f,\operatorname {\mathrm{coeq}}(h,k)\circ k\circ g)$ as a quotient of $\operatorname {\mathrm{CoEq}}(h\circ f,k\circ g)$ by the relation generated by declaring $h(y)\sim k(y)$ for each $y\in B$.
-
1That is, the following three ways of forming “the” coequaliser of $(f,g,h)$ agree:
-
(a)
Take the coequaliser of $(f,g,h)$, i.e. the colimit of the diagram
in $\mathsf{Sets}$. -
(b)
First take the coequaliser of $f$ and $g$, forming a diagram
\[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}(f,g)}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}(f,g) \]and then take the coequaliser of the composition
\[ A\underset {h}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}(f,g)}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}(f,g), \]obtaining a quotient
\[ \operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ f,\operatorname {\mathrm{coeq}}(f,g)\circ h)=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(f,g)\circ g,\operatorname {\mathrm{coeq}}(f,g)\circ h) \] -
(c)
First take the coequaliser of $g$ and $h$, forming a diagram
\[ A\underset {h}{\overset {g}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}(g,h)}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}(g,h) \]and then take the coequaliser of the composition
\[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\operatorname {\mathrm{coeq}}(g,h)}{\twoheadrightarrow }\operatorname {\mathrm{CoEq}}(g,h), \]obtaining a quotient
\[ \operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ g)=\operatorname {\mathrm{CoEq}}(\operatorname {\mathrm{coeq}}(g,h)\circ f,\operatorname {\mathrm{coeq}}(g,h)\circ h) \]
-
(a)
4.2.5 Coequalisers
Let $A$ and $B$ be sets and let $f,g\colon A\rightrightarrows B$ be functions.
Concretely, the coequaliser of $f$ and $g$ is the pair $(\operatorname {\mathrm{CoEq}}(f,g),\operatorname {\mathrm{coeq}}(f,g))$ consisting of:
We claim that $\operatorname {\mathrm{CoEq}}(f,g)$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have
Indeed, we have
for each $a\in A$. Next, we prove that $\operatorname {\mathrm{CoEq}}(f,g)$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form
In detail, by Chapter 10: Conditions on Relations, Construction 10.5.2.1.2, the relation $\mathord {\sim }$ of Definition 4.2.5.1.1 is given by declaring $a\sim b$ iff one of the following conditions is satisfied:
Here are some examples of coequalisers of sets.
Let $A$, $B$, and $C$ be sets.