7.3.1 Foundations

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

    The left tensor product of pointed sets is the functor1

    \[ \lhd \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

    defined as the composition

    \[ \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\overset {\mathsf{id}\times {\text{忘}}}{\to }\mathsf{Sets}_{*}\times \mathsf{Sets}\overset {\mathbf{\beta }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*},\mathsf{Sets}}}{\to }\mathsf{Sets}\times \mathsf{Sets}_{*}\overset {\odot }{\to }\mathsf{Sets}_{*}, \]

    where:

    • ${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.

    • ${\mathbf{\beta }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*},\mathsf{Sets}}}\colon \mathsf{Sets}_{*}\times \mathsf{Sets}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathsf{Sets}\times \mathsf{Sets}_{*}$ is the braiding of $\mathsf{Cats}_{\mathsf{2}}$, i.e. the functor witnessing the isomorphism

      \[ \mathsf{Sets}_{*}\times \mathsf{Sets}\cong \mathsf{Sets}\times \mathsf{Sets}_{*}. \]
    • $\odot \colon \mathsf{Sets}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the tensor functor of Item 1 of Proposition 7.2.1.1.6.


    1. 1Further Notation: Also written $\lhd _{\mathsf{Sets}_{*}}$.

    The left tensor product of pointed sets satisfies the following natural bijection:

    \[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ). \]

    That is to say, the following data are in natural bijection:

    1. 1.

      Pointed maps $f\colon X\lhd Y\to Z$.

  • 2.

    Maps of sets $f\colon X\times Y\to Z$ satisfying $f\webleft (x_{0},y\webright )=z_{0}$ for each $y\in Y$.

  • The left tensor product of pointed sets may be described as follows:

    • The left tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pair $\webleft (\webleft (X\lhd Y,x_{0}\lhd y_{0}\webright ),\iota \webright )$ consisting of

      • A pointed set $\webleft (X\lhd Y,x_{0}\lhd y_{0}\webright )$;

      • A left bilinear morphism of pointed sets $\iota \colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\lhd Y$;

      satisfying the following universal property:

      • (★)
      • Given another such pair $\webleft (\webleft (Z,z_{0}\webright ),f\webright )$ consisting of
        • A pointed set $\webleft (Z,z_{0}\webright )$;

        • A left bilinear morphism of pointed sets $f\colon \webleft (X\times Y,\webleft (x_{0},y_{0}\webright )\webright )\to X\lhd Y$;

        there exists a unique morphism of pointed sets $X\lhd Y\overset {\exists !}{\to }Z$ making the diagram
        commute.

    In detail, the left tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pointed set $\webleft (X\lhd Y,\webleft [x_{0}\webright ]\webright )$ consisting of:

    • The Underlying Set. The set $X\lhd Y$ defined by

      \begin{align*} X\lhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert Y\right\rvert \odot X\\ & \cong \bigvee _{y\in Y}\webleft (X,x_{0}\webright ), \end{align*}

      where $\left\lvert Y\right\rvert $ denotes the underlying set of $\webleft (Y,y_{0}\webright )$.

    • The Underlying Basepoint. The point $\webleft [\webleft (y_{0},x_{0}\webright )\webright ]$ of $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$, which is equal to $\webleft [\webleft (y,x_{0}\webright )\webright ]$ for any $y\in Y$.

    Since $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$ is defined as the quotient of $\coprod _{y\in Y}X$ by the equivalence relation $R$ generated by declaring $\webleft (y,x\webright )\sim \webleft (y',x'\webright )$ if $x=x'=x_{0}$, we have, by Chapter 10: Conditions on Relations, Unresolved reference, a natural bijection

    \[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright ), \]

    where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ is the set

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$, then}\\ & \text{$f\webleft (y,x\webright )=f\webleft (y',x'\webright )$}\end{aligned} \right\} . \]
    However, the condition $\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$ only holds when:

    1. 1.

      We have $x=x'$ and $y=y'$.

    2. 2.

      We have $x=x'=x_{0}$.

    So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )$ with a corresponding $\overline{f}\colon X\lhd Y\to Z$, the latter case above implies

    \begin{align*} f\webleft (\webleft [\webleft (y,x_{0}\webright )\webright ]\webright ) & = f\webleft (\webleft [\webleft (y',x_{0}\webright )\webright ]\webright )\\ & = f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ), \end{align*}

    and since $\overline{f}\colon X\lhd Y\to Z$ is a pointed map, we have

    \begin{align*} f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ) & = \overline{f}\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright )\\ & = z_{0}. \end{align*}

    Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality

    \[ f\webleft (x_{0},y\webright )=z_{0} \]

    for each $y\in Y$, giving an equality

    \[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )=\operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \]

    of sets, which when composed with our earlier isomorphism

    \[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]

    gives our desired natural bijection, finishing the proof.

    We write1 $x\lhd y$ for the element $\webleft [\webleft (y,x\webright )\webright ]$ of

    \[ X\lhd Y\cong \left\lvert Y\right\rvert \odot X. \]


    1. 1Further Notation: Also written $x\lhd _{\mathsf{Sets}_{*}}y$.

    Employing the notation introduced in Notation 7.3.1.1.5, we have

    \[ x_{0}\lhd y_{0}=x_{0}\lhd y \]

    for each $y\in Y$, and

    \[ x_{0}\lhd y=x_{0}\lhd y' \]

    for each $y,y'\in Y$.

    Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.

    1. 1.

      Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\lhd Y$ define functors

      \[ \begin{array}{ccc} X\lhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\lhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\lhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]

      In particular, given pointed maps

      \begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}

      the induced map

      \[ f\lhd g\colon X\lhd Y\to A\lhd B \]

      is given by

      \[ \webleft [f\lhd g\webright ]\webleft (x\lhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\lhd g\webleft (y\webright ) \]

      for each $x\lhd y\in X\lhd Y$.

    2. 2.

      Adjointness I. We have an adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webright ) \]

      natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 7.3.2.1.1.

    3. 3.

      Adjointness II. The functor

      \[ X\lhd -\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]

      does not admit a right adjoint.

    4. 4.

      Adjointness III. We have a ${\text{忘}}$-relative adjunction

      witnessed by a bijection of sets

      \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (|Y|,\mathsf{Sets}_{*}\webleft (X,Z\webright )\webright ) \]

      natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.

    Item 1: Functoriality
    This follows from the definition of $\lhd $ as a composition of functors (Definition 7.3.1.1.1).

    Item 2: Adjointness I
    This follows from Item 3 of Proposition 7.2.1.1.6.

    Item 3: Adjointness II
    For $X\lhd -$ to admit a right adjoint would require it to preserve colimits by Unresolved reference, Unresolved reference of Unresolved reference. However, we have

    \begin{align*} X\lhd \mathrm{pt}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\mathrm{pt}|\odot X\\ & \cong X\\ & \ncong \mathrm{pt}, \end{align*}

    and thus we see that $X\lhd -$ does not have a right adjoint.

    Item 4: Adjointness III
    This follows from Item 2 of Proposition 7.2.1.1.6.

    Here is some intuition on why $X\lhd -$ fails to be a left adjoint. Item 4 of Proposition 7.3.1.1.7 states that we have a natural bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (|Y|,\mathsf{Sets}_{*}\webleft (X,Z\webright )\webright ), \]

    so it would be reasonable to wonder whether a natural bijection of the form

    \[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (Y,\boldsymbol {\mathsf{Sets}}_{*}\webleft (X,Z\webright )\webright ), \]

    also holds, which would give $X\lhd -\dashv \boldsymbol {\mathsf{Sets}}_{*}\webleft (X,-\webright )$. However, such a bijection would require every map

    \[ f\colon X\lhd Y\to Z \]

    to satisfy

    \[ f\webleft (x\lhd y_{0}\webright )=z_{0} \]

    for each $x\in X$, whereas we are imposing such a basepoint preservation condition only for elements of the form $x_{0}\lhd y$. Thus $\boldsymbol {\mathsf{Sets}}_{*}\webleft (X,-\webright )$ can’t be a right adjoint for $X\lhd -$, and as shown by Item 3 of Proposition 7.3.1.1.7, no functor can.1


    1. 1The functor $\boldsymbol {\mathsf{Sets}}_{*}\webleft (X,-\webright )$ is instead right adjoint to $X\wedge -$, the smash product of pointed sets of Definition 7.5.1.1.1. See Item 2 of Proposition 7.5.1.1.10.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: