7.3.1 Foundations
Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.
The left tensor product of pointed sets is the functor
\[ \lhd \colon \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]
defined as the composition
\[ \mathsf{Sets}_{*}\times \mathsf{Sets}_{*}\overset {\mathsf{id}\times {\text{忘}}}{\to }\mathsf{Sets}_{*}\times \mathsf{Sets}\overset {\mathbf{\beta }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*},\mathsf{Sets}}}{\to }\mathsf{Sets}\times \mathsf{Sets}_{*}\overset {\odot }{\to }\mathsf{Sets}_{*}, \]
where:
-
•
${\text{忘}}\colon \mathsf{Sets}_{*}\to \mathsf{Sets}$ is the forgetful functor from pointed sets to sets.
-
•
${\mathbf{\beta }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}_{*},\mathsf{Sets}}}\colon \mathsf{Sets}_{*}\times \mathsf{Sets}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathsf{Sets}\times \mathsf{Sets}_{*}$ is the braiding of $\mathsf{Cats}_{\mathsf{2}}$, i.e. the functor witnessing the isomorphism
\[ \mathsf{Sets}_{*}\times \mathsf{Sets}\cong \mathsf{Sets}\times \mathsf{Sets}_{*}. \]
-
•
$\odot \colon \mathsf{Sets}\times \mathsf{Sets}_{*}\to \mathsf{Sets}_{*}$ is the tensor functor of Item 1 of Proposition 7.2.1.1.6.
In detail, the left tensor product of $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ is the pointed set $\webleft (X\lhd Y,\webleft [x_{0}\webright ]\webright )$ consisting of:
-
•
The Underlying Set. The set $X\lhd Y$ defined by
\begin{align*} X\lhd Y & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\lvert Y\right\rvert \odot X\\ & \cong \bigvee _{y\in Y}\webleft (X,x_{0}\webright ), \end{align*}
where $\left\lvert Y\right\rvert $ denotes the underlying set of $\webleft (Y,y_{0}\webright )$.
-
•
The Underlying Basepoint. The point $\webleft [\webleft (y_{0},x_{0}\webright )\webright ]$ of $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$, which is equal to $\webleft [\webleft (y,x_{0}\webright )\webright ]$ for any $y\in Y$.
Since $\bigvee _{y\in Y}\webleft (X,x_{0}\webright )$ is defined as the quotient of $\coprod _{y\in Y}X$ by the equivalence relation $R$ generated by declaring $\webleft (y,x\webright )\sim \webleft (y',x'\webright )$ if $x=x'=x_{0}$, we have, by Chapter 10: Conditions on Relations,
, a natural bijection
\[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright ), \]
where $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ is the set
\[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left\{ f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )\ \middle |\ \begin{aligned} & \text{for each $x,y\in X$, if}\\ & \text{$\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$, then}\\ & \text{$f\webleft (y,x\webright )=f\webleft (y',x'\webright )$}\end{aligned} \right\} . \]
However, the condition $\webleft (y,x\webright )\sim _{R}\webleft (y',x'\webright )$ only holds when:
2.
We have $x=x'=x_{0}$.
So, given $f\in \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (\coprod _{y\in Y}X,Z\webright )$ with a corresponding $\overline{f}\colon X\lhd Y\to Z$, the latter case above implies
\begin{align*} f\webleft (\webleft [\webleft (y,x_{0}\webright )\webright ]\webright ) & = f\webleft (\webleft [\webleft (y',x_{0}\webright )\webright ]\webright )\\ & = f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ), \end{align*}
and since $\overline{f}\colon X\lhd Y\to Z$ is a pointed map, we have
\begin{align*} f\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright ) & = \overline{f}\webleft (\webleft [\webleft (y_{0},x_{0}\webright )\webright ]\webright )\\ & = z_{0}. \end{align*}
Thus the elements $f$ in $\operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )$ are precisely those functions $f\colon X\times Y\to Z$ satisfying the equality
\[ f\webleft (x_{0},y\webright )=z_{0} \]
for each $y\in Y$, giving an equality
\[ \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright )=\operatorname {\mathrm{Hom}}^{\otimes ,\mathrm{L}}_{\mathsf{Sets}_{*}}\webleft (X\times Y,Z\webright ) \]
of sets, which when composed with our earlier isomorphism
\[ \mathsf{Sets}_{*}\webleft (X\lhd Y,Z\webright ) \cong \operatorname {\mathrm{Hom}}^{R}_{\mathsf{Sets}}\webleft (X\times Y,Z\webright ), \]
gives our desired natural bijection, finishing the proof.
We write $x\lhd y$ for the element $\webleft [\webleft (y,x\webright )\webright ]$ of
\[ X\lhd Y\cong \left\lvert Y\right\rvert \odot X. \]
Let $\webleft (X,x_{0}\webright )$ and $\webleft (Y,y_{0}\webright )$ be pointed sets.
-
1.
Functoriality. The assignments $X,Y,\webleft (X,Y\webright )\mapsto X\lhd Y$ define functors
\[ \begin{array}{ccc} X\lhd -\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -\lhd Y\colon \mkern -15mu & \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*},\\ -_{1}\lhd -_{2}\colon \mkern -15mu & \mathsf{Sets}_{*}\times \mathsf{Sets}_{*} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}_{*}. \end{array} \]
In particular, given pointed maps
\begin{align*} f & \colon \webleft (X,x_{0}\webright ) \to \webleft (A,a_{0}\webright ),\\ g & \colon \webleft (Y,y_{0}\webright ) \to \webleft (B,b_{0}\webright ), \end{align*}
the induced map
\[ f\lhd g\colon X\lhd Y\to A\lhd B \]
is given by
\[ \webleft [f\lhd g\webright ]\webleft (x\lhd y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright )\lhd g\webleft (y\webright ) \]
for each $x\lhd y\in X\lhd Y$.
-
2.
Adjointness I. We have an adjunction
witnessed by a bijection of sets
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X,\webleft [Y,Z\webright ]^{\lhd }_{\mathsf{Sets}_{*}}\webright ) \]
natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$, where $\webleft [X,Y\webright ]^{\lhd }_{\mathsf{Sets}_{*}}$ is the pointed set of Definition 7.3.2.1.1.
-
3.
Adjointness II. The functor
\[ X\lhd -\colon \mathsf{Sets}_{*}\to \mathsf{Sets}_{*} \]
does not admit a right adjoint.
-
4.
Adjointness III. We have a ${\text{忘}}$-relative adjunction
witnessed by a bijection of sets
\[ \operatorname {\mathrm{Hom}}_{\mathsf{Sets}_{*}}\webleft (X\lhd Y,Z\webright )\cong \operatorname {\mathrm{Hom}}_{\mathsf{Sets}}\webleft (|Y|,\mathsf{Sets}_{*}\webleft (X,Z\webright )\webright ) \]
natural in $\webleft (X,x_{0}\webright ),\webleft (Y,y_{0}\webright ),\webleft (Z,z_{0}\webright )\in \operatorname {\mathrm{Obj}}\webleft (\mathsf{Sets}_{*}\webright )$.
This follows from the definition of $\lhd $ as a composition of functors (Definition 7.3.1.1.1).
This follows from Item 3 of Proposition 7.2.1.1.6.
For $X\lhd -$ to admit a right adjoint would require it to preserve colimits by
,
of
. However, we have
\begin{align*} X\lhd \mathrm{pt}& \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}|\mathrm{pt}|\odot X\\ & \cong X\\ & \ncong \mathrm{pt}, \end{align*}
and thus we see that $X\lhd -$ does not have a right adjoint.
This follows from Item 2 of Proposition 7.2.1.1.6.