Let $f\colon A\to B$ and $g\colon B\to A$ be functions.1
-
1.
The representable relation associated to $f$ is the relation $\chi _{f}\colon A\mathrel {\rightarrow \kern -9.5pt\mathrlap {|}\kern 6pt}B$ defined as the composition
\[ A\times B\overset {f\times \operatorname {\mathrm{id}}_{B}}{\to }B\times B\overset {\chi _{B}}{\to }\{ \mathsf{true},\mathsf{false}\} , \]i.e. given by declaring $a\sim _{\chi _{f}}b$ iff $f\webleft (a\webright )=b$.