12.3.2 The Yoneda Extension Functor

    Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor with $\mathcal{C}$ small and $\mathcal{D}$ cocomplete.

    The Yoneda extension functor associated to $F$ is the left Kan extension

    Here are some examples of Yoneda extensions.

    1. 1.

      The Homotopy Category Functor. Let

      \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Cats} \]

      be the functor given by $[n]\to \mathbb {n}$. Then the Yoneda extension

      \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(\iota )\colon \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}}\to \mathsf{Cats} \]

      of $\iota $ is given by the homotopy category functor $\mathsf{Ho}$ of Unresolved reference, Unresolved reference.

    2. 2.

      The Geometric Realisation Functor. Let

      \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{Top} \]

      be the functor given by $[n]\to \left\lvert \Delta ^{n}\right\rvert $. Then the Yoneda extension

      \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(\iota )\colon \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}}\to \mathsf{Top} \]

      of $\iota $ is given by the geometric realisation functor $\left\lvert -\right\rvert $ of Unresolved reference, Unresolved reference.

    3. 3.

      The Path Simplicial Category Functor. Let

      \[ \iota \colon \mathbb {\Delta }\hookrightarrow \mathsf{sCats} \]

      be the functor given by $[n]\to \mathsf{Path}(\Delta ^{n})$, where $\mathsf{Path}(\Delta ^{n})$ is the simplicial category of Unresolved reference, Unresolved reference. Then the Yoneda extension

      \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(\iota )\colon \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}}\to \mathsf{sCats} \]

      of $\iota $ is given by the path simplicial category functor $\mathsf{Path}$ of Unresolved reference, Unresolved reference.

    4. 4.

      The Barycentric Subdivision Functor. Let

      \[ \mathrm{sd}\colon \mathbb {\Delta }\hookrightarrow \mathsf{sSets} \]

      be the functor given by $[n]\to \mathrm{Sd}(\Delta ^{n})$, where $\mathrm{Sd}(\Delta ^{n})$ is the barycentric subdivision of $\Delta ^{n}$ of Unresolved reference. Then the Yoneda extension

      \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(\mathrm{sd})\colon \underbrace{\mathsf{PSh}(\mathbb {\Delta })}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{sSets}}\to \mathsf{sSets} \]

      of $\mathrm{sd}$ is given by the barycentric subdivision functor $\mathrm{Sd}$ of Unresolved reference.

    Let $F\colon \mathcal{C}\to \mathcal{D}$ be a functor with $\mathcal{C}$ small and $\mathcal{D}$ cocomplete.

  • 1.

    Functoriality. The assignment $F\mapsto \operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)$ defines a functor

    \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}\colon \mathsf{Fun}(\mathcal{C},\mathcal{D})\to \mathsf{Fun}(\mathsf{PSh}(\mathcal{C}),\mathcal{D}). \]
  • 2.

    Adjointness. We have an adjunction1

    witnessed by a bijection

    \[ \operatorname {\mathrm{Hom}}_{\mathcal{D}}([\operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)](\mathcal{F}),D)\cong \operatorname {\mathrm{Nat}}(\mathcal{F},{\text{よ}}_{F}(D)), \]

    natural in $\mathcal{F}\in \operatorname {\mathrm{Obj}}(\mathsf{PSh}(\mathcal{C}))$ and $D\in \operatorname {\mathrm{Obj}}(\mathcal{D})$.

  • 3.

    Interaction With the Yoneda Embedding. We have a natural isomorphism of functors

  • 4.

    As a Coend. We have

    \begin{align*} [\operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)](\mathcal{F}) & \cong \int ^{A\in \mathcal{C}}\operatorname {\mathrm{Nat}}(h_{A},\mathcal{F})\odot F(A)\\ & \cong \int ^{A\in \mathcal{C}}\mathcal{F}(A)\odot F(A) \end{align*}

    for each $\mathcal{F}\in \operatorname {\mathrm{Obj}}(\mathsf{PSh}(\mathcal{C}))$.

  • 5.

    Interaction With Tensors of Presheaves With Functors. We have a natural isomorphism

    \[ \operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)\cong (-)\odot _{\mathcal{C}}F, \]

    natural in $F\in \operatorname {\mathrm{Obj}}(\mathsf{Fun}(\mathcal{C},\mathcal{D}))$.

  • 6.

    Interaction With Finite Limits. Let $F\colon \mathcal{C}\to \mathsf{Sets}$ be a functor. The following conditions are equivalent:

    1. (a)

      The functor $F$ preserves finite limits.

    2. (b)

      The functor $\operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)$ preserves finite limits.

    3. (c)

      The category of elements $\textstyle \int _{\mathcal{C}}F$ of $F$ is cofiltered.


    1. 1Applying Item 2 of Proposition 12.3.1.1.4, we see that this adjunction has the form $\operatorname {\mathrm{Lan}}_{{\text{よ}}}(F)\dashv \operatorname {\mathrm{Lan}}_{F}({\text{よ}})$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: