12 Presheaves and the Yoneda Lemma
This chapter contains some material about presheaves and the Yoneda lemma.
This chapter is under revision. TODO:
-
1.
Subsection properties of categories of copresheaves
-
2.
Adjointness of tensor product of functors
-
3.
Limit of category of elements (instead of colimit)
-
4.
Category of elements where objects are natural transformations $\mathcal{F}\Rightarrow h_{X}$ instead of the other way around. Is this related to Isbell duality?
-
5.
Motivate the proof of the Yoneda lemma as in Martin’s comment here:
-
6.
Add discussion of universal properties
-
7.
Add $h_{g\circ f}=h_{g}\circ h_{f}$ to properties of representable natural transformations
-
Section 12.1: Presheaves
-
Subsection 12.1.1: Foundations
- Definition 12.1.1.1.1: Presheaves on a Category
- Example 12.1.1.1.2: Presheaves on One-Object Categories
- Definition 12.1.1.1.3: Morphisms of Presheaves
- Definition 12.1.1.1.4: The Category of Presheaves on a Category
- Remark 12.1.1.1.5: Unwinding Definition 12.1.1.1.4
-
Subsection 12.1.2: Representable Presheaves
- Definition 12.1.2.1.1: Representable Presheaves
- Example 12.1.2.1.2: Representable Presheaves on One-Object Categories
- Proposition 12.1.2.1.3: Uniqueness of Representing Objects Up to Isomorphism
-
Subsection 12.1.3: Representable Natural Transformations
- Definition 12.1.3.1.1: Representable Natural Transformations
-
Subsection 12.1.4: The Yoneda Embedding
- Definition 12.1.4.1.1: The Yoneda Embedding
- Remark 12.1.4.1.2: On the Usage of ${\text{よ}}$ to Denote the Yoneda Embedding
- Proposition 12.1.4.1.3: Properties of the Yoneda Embedding
-
Subsection 12.1.5: The Yoneda Lemma
- Theorem 12.1.5.1.1: The Yoneda Lemma
-
Subsection 12.1.6: Properties of Categories of Presheaves
- Proposition 12.1.6.1.1: Properties of Categories of Presheaves
-
Subsection 12.1.1: Foundations
-
Section 12.2: Copresheaves
-
Subsection 12.2.1: Foundations
- Definition 12.2.1.1.1: Copresheaves on a Category
- Example 12.2.1.1.2: Copresheaves on One-Object Categories
- Definition 12.2.1.1.3: Morphisms of Copresheaves
- Definition 12.2.1.1.4: The Category of Copresheaves on a Category
- Remark 12.2.1.1.5: Unwinding Definition 12.2.1.1.4
-
Subsection 12.2.2: Corepresentable Copresheaves
- Definition 12.2.2.1.1: Corepresentable Copresheaves
- Example 12.2.2.1.2: Corepresentable Copresheaves on One-Object Categories
- Proposition 12.2.2.1.3: Uniqueness of Corepresenting Objects Up to Isomorphism
-
Subsection 12.2.3: Corepresentable Natural Transformations
- Definition 12.2.3.1.1: Corepresentable Natural Transformations
-
Subsection 12.2.4: The Contravariant Yoneda Embedding
- Definition 12.2.4.1.1: The Contravariant Yoneda Embedding
- Proposition 12.2.4.1.2: Properties of the Contravariant Yoneda Embedding
-
Subsection 12.2.5: The Contravariant Yoneda Lemma
- Theorem 12.2.5.1.1: The Contravariant Yoneda Lemma
-
Subsection 12.2.1: Foundations
-
Section 12.3: Restricted Yoneda Embeddings and Yoneda Extensions
-
Subsection 12.3.1: Foundations
- Definition 12.3.1.1.1: The Restricted Yoneda Embedding Associated to a Functor
- Remark 12.3.1.1.2: Unwinding Definition 12.3.1.1.1
- Example 12.3.1.1.3: Examples of Restricted Yoneda Embeddings
- Proposition 12.3.1.1.4: Properties of the Restricted Yoneda Embedding
-
Subsection 12.3.2: The Yoneda Extension Functor
- Definition 12.3.2.1.1: The Yoneda Extension Functor
- Example 12.3.2.1.2: Examples of Yoneda Extensions
- Proposition 12.3.2.1.3: Properties of Yoneda Extensions
-
Subsection 12.3.1: Foundations
-
Section 12.4: Functor Tensor Products
-
Subsection 12.4.1: The Tensor Product of Presheaves With Copresheaves
- Definition 12.4.1.1.1: The Tensor Product of Presheaves With Copresheaves
- Remark 12.4.1.1.2: Unwinding Definition 12.4.1.1.1
- Example 12.4.1.1.3: The Tensor Product of Presheaves With Copresheaves on One Object Categories
- Proposition 12.4.1.1.4: Properties of Tensor Products of Presheaves With Copresheaves
-
Subsection 12.4.2: The Tensor of a Presheaf With a Functor
- Definition 12.4.2.1.1: The Tensor of a Presheaf With a Functor
- Remark 12.4.2.1.2: Unwinding Definition 12.4.2.1.1
- Proposition 12.4.2.1.3: Properties of Tensors of Presheaves With Functors
-
Subsection 12.4.3: The Tensor of a Copresheaf With a Functor
- Definition 12.4.3.1.1: The Tensor of a Copresheaf With a Functor
- Remark 12.4.3.1.2: Unwinding Definition 12.4.3.1.1
- Proposition 12.4.3.1.3: Properties of Tensors of Copresheaves With Functors
-
Subsection 12.4.1: The Tensor Product of Presheaves With Copresheaves